
Model Predictive Control Toolbox™

User's Guide

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ User's Guide
© COPYRIGHT 2005–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release R2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)
October 2014 Online only Revised for Version 5.0 (Release R2014b)
March 2015 Online only Revised for Version 5.0.1 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)

v

Contents

Introduction
1

Specifying Scale Factors . 1-2
Overview . 1-2
Defining Scale Factors . 1-2

Choosing Sample Time and Horizons 1-6
Sample Time . 1-6
Prediction Horizon . 1-7
Control Horizon . 1-8
Defining Sample Time and Horizons 1-8

Specifying Constraints . 1-10
Input and Output Constraints . 1-10
Constraint Softening . 1-12

Tuning Weights . 1-16
Initial Tuning . 1-16
Testing and Refinement . 1-18
Robustness . 1-19

Model Predictive Control Problem Setup
2

Optimization Problem . 2-2
Overview . 2-2
Standard Cost Function . 2-2
Alternative Cost Function . 2-6
Constraints . 2-7
QP Matrices . 2-8
Unconstrained Model Predictive Control 2-13

vi Contents

Adjusting Disturbance and Noise Models 2-15
Overview . 2-15
Output Disturbance Model . 2-16
Measurement Noise Model . 2-18
Input Disturbance Model . 2-20
Restrictions . 2-22
Disturbance Rejection Tuning . 2-23

Custom State Estimation . 2-25

Time-Varying Weights and Constraints 2-26
Time-Varying Weights . 2-26
Time-Varying Constraints . 2-28

Terminal Weights and Constraints . 2-30

Constraints on Linear Combinations of Inputs and
Outputs . 2-33

Manipulated Variable Blocking . 2-35

QP Solver . 2-38
Custom QP Application . 2-39
Custom QP Solver . 2-39

Controller State Estimation . 2-42
Controller State Variables . 2-42
State Observer . 2-43
State Estimation . 2-44
Built-in Steady-State Kalman Gains Calculation 2-46
Output Variable Prediction . 2-47

Model Predictive Control Simulink Library
3

MPC Library . 3-2

Relationship of Multiple MPC Controllers to MPC Controller
Block . 3-3

Listing the controllers . 3-3

vii

Designing the controllers . 3-3
Defining controller switching . 3-3
Improving prediction accuracy . 3-4

Generate Code and Deploy Controller to Real-Time
Targets . 3-5

Code Generation in Simulink . 3-5
Code Generation in MATLAB . 3-5

Case-Study Examples
4

Design MPC Controller for Position Servomechanism 4-2

Design MPC Controller for Paper Machine Process 4-24

Bumpless Transfer Between Manual and Automatic
Operations . 4-50

Open Simulink Model . 4-50
Define Plant and MPC Controller . 4-51
Configure MPC Block Settings . 4-52
Examine Switching Between Manual and Automatic

Operation . 4-53
Turn off Manipulated Variable Feedback 4-55

Switching Controller Online and Offline with Bumpless
Transfer . 4-58

Coordinate Multiple Controllers at Different Operating
Points . 4-64

Use Custom Constraints in Blending Process 4-72

Providing LQR Performance Using Terminal Penalty 4-83
References . 4-88

Real-Time Control with OPC Toolbox 4-89

Simulation and Code Generation Using Simulink Coder . . 4-94

viii Contents

Simulation and Structured Text Generation Using PLC
Coder . 4-104

Generate Code To Compute Optimal MPC Moves in
MATLAB . 4-108

Setting Targets for Manipulated Variables 4-116

Specifying Alternative Cost Function with Off-Diagonal
Weight Matrices . 4-120

Review Model Predictive Controller for Stability and
Robustness Issues . 4-125

Control of an Inverted Pendulum on a Cart 4-144

Simulate MPC Controller with a Custom QP Solver 4-155

Adaptive MPC Design
5

Adaptive MPC . 5-2
When to Use Adaptive MPC . 5-2
Plant Model . 5-3
Nominal Operating Point . 5-4
State Estimation . 5-4

Model Updating Strategy . 5-6
Overview . 5-6
Other Considerations . 5-6

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Successive Linearization . 5-8

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Online Model Estimation . 5-21

Time-Varying MPC . 5-34
When to Use Time-Varying MPC . 5-34
Time-Varying Prediction Models . 5-34

ix

Time-Varying Nominal Conditions 5-36
State Estimation . 5-37

Time-Varying MPC Control of a Time-Varying Plant 5-39

Explicit MPC Design
6

Explicit MPC . 6-2

Design Workflow for Explicit MPC . 6-4
Traditional (Implicit) MPC Design . 6-4
Explicit MPC Generation . 6-5
Explicit MPC Simplification . 6-6
Implementation . 6-6
Simulation . 6-7

Explicit MPC Control of a Single-Input-Single-Output
Plant . 6-9

Explicit MPC Control of an Aircraft with Unstable Poles . . 6-21

Explicit MPC Control of DC Servomotor with Constraint on
Unmeasured Output . 6-30

Explicit MPC Control of an Inverted Pendulum on a Cart . 6-42

Gain Scheduling MPC Design
7

Gain-Scheduled MPC . 7-2

Design Workflow for Gain Scheduling 7-3
General Design Steps . 7-3
Tips . 7-3

x Contents

Gain Scheduled MPC Control of Nonlinear Chemical
Reactor . 7-5

Gain Scheduled MPC Control of Mass-Spring System 7-28

Gain Scheduled MPC Control of an Inverted Pendulum on a
Cart . 7-39

Reference for MPC Designer App
8

Generate MATLAB Code from MPC Designer 8-2

Generate Simulink Model from MPC Designer 8-4

Compare Multiple Controller Responses Using MPC
Designer . 8-6

1

Introduction

• “Specifying Scale Factors” on page 1-2
• “Choosing Sample Time and Horizons” on page 1-6
• “Specifying Constraints” on page 1-10
• “Tuning Weights” on page 1-16

1 Introduction

1-2

Specifying Scale Factors

In this section...

“Overview” on page 1-2
“Defining Scale Factors” on page 1-2

Overview

Recommended practice includes specification of scale factors for each plant input and
output variable, which is especially important when certain variables have much larger
or smaller magnitudes than others.

The scale factor should equal (or approximate) the span of the variable. Span is the
difference between its maximum and minimum value in engineering units, that is, the
unit of measure specified in the plant model. Internally, MPC divides each plant input
and output signal by its scale factor to generate dimensionless signals.

The potential benefits of scaling are as follows:

• Default MPC tuning weights work best when all signals are of order unity.
Appropriate scale factors make the default weights a good starting point for controller
tuning and refinement.

• When choosing cost function weights, you can focus on the relative priority of each
term rather than a combination of priority and signal scale.

• Improved numerical conditioning. When values are scaled, round-off errors have less
impact on calculations.

Once you have tuned the controller, changing a scale factor is likely to affect performance
and the controller may need retuning. Best practice is to establish scale factors at the
beginning of controller design and hold them constant thereafter.

Defining Scale Factors

To identify scale factors, estimate the span of each plant input and output variable in
engineering units.

• If the signal has known bounds, use the difference between the upper and lower limit.

 Specifying Scale Factors

1-3

• If you do not know the signal bounds, consider running open-loop plant model
simulations. You can vary the inputs over their likely ranges, and record output
signal spans.

• If you have no idea, use the default scale factor (=1).

You can define scale factors at the command line and using the MPC Designer app.

Once you have set the scale factors and have begun to tune the controller performance,
hold the scale factors constant.

Using Commands

After you create the MPC controller object using the mpc command, set the scale factor
property for each plant input and output variable.

For example, the following commands create a random plant, specify the signal types,
and define a scale factor for each signal.

% Random plant for illustrative purposes: 5 inputs, 3 outputs

Plant = drss(4,3,5);

Plant.InputName = {'MV1','UD1','MV2','UD2','MD'};

Plant.OutputName = {'UO','MO1','MO2'};

% Example signal spans

Uspan = [2, 20, 0.1, 5, 2000];

Yspan = [0.01, 400, 75];

% Example signal type specifications

iMV = [1 3];

iMD = 5;

iUD = [2 4];

iDV = [iMD,iUD];

Plant = setmpcsignals(Plant,'MV',iMV,'MD',iMD,'UD',iUD, ...

 'MO',[2 3],'UO',1);

Plant.d(:,iMV) = 0; % MPC requires zero direct MV feed-through

% Controller object creation. Ts = 0.3 for illustration.

MPCobj = mpc(Plant, 0.3);

% Override default scale factors using specified spans

for i = 1:2

 MPCobj.MV(i).ScaleFactor = Uspan(iMV(i));

end

1 Introduction

1-4

% NOTE: DV sequence is MD followed by UD

for i = 1:3

 MPCobj.DV(i).ScaleFactor = Uspan(iDV(i));

end

for i = 1:3

 MPCobj.OV(i).ScaleFactor = Yspan(i);

end

Using MPC Designer App

After opening MPC Designer and defining the initial MPC structure, in the MPC

Designer tab, click I/O Attributes .

In the Input and Output Channel Specifications dialog box, specify a Scale Factor for
each input and output signal.

Click OK to update the controller settings.

 Specifying Scale Factors

1-5

See Also
mpc | MPC Designer

Related Examples
• Using Scale Factor to Facilitate Weight Tuning

More About
• “Choosing Sample Time and Horizons” on page 1-6

../../mpc/examples/using-scale-factor-to-facilitate-weight-tuning.html

1 Introduction

1-6

Choosing Sample Time and Horizons

In this section...

“Sample Time” on page 1-6
“Prediction Horizon” on page 1-7
“Control Horizon” on page 1-8
“Defining Sample Time and Horizons” on page 1-8

Sample Time

Duration

Recommended practice is to choose the control interval duration (controller property Ts)
initially, and then hold it constant as you tune other controller parameters. If it becomes
obvious that the original choice was poor, you can revise Ts. If you do so, you might then
need to retune other settings.

Qualitatively, as Ts decreases, rejection of unknown disturbance usually improves
and then plateaus. The Ts value at which performance plateaus depends on the plant
dynamic characteristics.

However, as Ts becomes small, the computational effort increases dramatically. Thus, the
optimal choice is a balance of performance and computational effort.

In Model Predictive Control, the prediction horizon, p is also an important consideration.
If one chooses to hold the prediction horizon duration (the product p*Ts) constant, p must
vary inversely with Ts. Many array sizes are proportional to p. Thus, as p increases, the
controller memory requirements ans QP solution time increase.

Consider the following when choosing Ts:

• As a rough guideline, set Ts between 10% and 25% of your minimum desired closed-
loop response time.

• Run at least one simulation to see whether unmeasured disturbance rejection
improves significantly when Ts is halved. If so, consider revising Ts.

• For process control, Ts >> 1 s is common, especially when MPC supervises lower-level
single-loop controllers. Other applications, such as automotive or aerospace), can

 Choosing Sample Time and Horizons

1-7

require Ts < 1 s. If the time needed for solving the QP in real time exceeds the desired
control interval, consider the “Explicit MPC” on page 6-2 option.

• For plants with delays, the number of state variables needed for modeling delays is
inversely proportional to Ts.

• For open-loop unstable plants, if p*Ts is too large, such that the plant step responses
become infinite during this amount of time, key parameters needed for MPC
calculations become undefined, generating an error message.

Units

The controller inherits its time unit from the plant model. Specifically, the controller uses
the TimeUnit property of the plant model LTI object. This property defaults to seconds.

Prediction Horizon

Suppose that the current control interval is k. The prediction horizon, p, is the number of
future control intervals the MPC controller must evaluate by prediction when optimizing
its MVs at control interval k.

Tips

• Recommended practice is to choose p early in the controller design and then hold it
constant while tuning other controller settings, such as the cost function weights.
In other words, do not use p adjustments for controller tuning. Rather, the value of
p should be such that the controller is internally stable and anticipates constraint
violations early enough to allow corrective action.

• If the desired closed-loop response time is T and the control interval is Ts, try p such
that T ≈ pTs.

• Plant delays impose a lower bound on the possible closed-loop response times. Choose
p accordingly. To check for a violation of this condition, ue the review command.

• Recommended practice is to increase p until further increases have a minor impact
on performance. If the plant is open-loop unstable, the maximum p is the number
of control intervals required for the open-loop step response of the plant to become
infinite. p > 50 is rarely necessary unless Ts is too small.

• Unfavorable plant characteristics combined with a small p can generate an internally
unstable controller. To check for this condition, use the review command, and
increase p if possible. If p is already large, consider the following:

• Increase Ts.

1 Introduction

1-8

• Increase the cost function weights on MV increments.
• Modify the control horizon or use MV blocking (see “Manipulated Variable

Blocking” on page 2-35).
• Use a small p with terminal weighting to approximate LQR behavior (See

“Terminal Weights and Constraints” on page 2-30).

Control Horizon

The control horizon, m, is the number of MV moves to be optimized at control interval k.
The control horizon falls between 1 and the prediction horizon p. The default is m = 2.
Regardless of your choice for m, when the controller operates, the optimized MV move at
the beginning of the horizon is used and any others are discarded.

Tips

Reasons to keep m << p are as follows:

• Small m means fewer variables to compute in the QP solved at each control interval,
which promotes faster computations.

• If the plant includes delays, m < p is essential. Otherwise, some MV moves might not
affect any of the plant outputs before the end of the prediction horizon, leading to a
singular QP Hessian matrix. To check for a violation of this condition, use the review
command.

• Small m promotes (but does not guarantee) an internally stable controller.

Defining Sample Time and Horizons

You can define the sample time, prediction horizon, and control horizon when creating an
mpc controller at the command line. After creating a controller, mpcObj, you can modify
the sample time and horizons by setting the following controller properties:

• Sample time — mpcObj.Ts
• Prediction horizon — mpcObj.p
• Control horizon — mpcObj.m

Also, when designing an MPC controller using the MPC Designer app, in the Tuning
tab, in the Horizon section, you can modify the sample time and horizons.

 Choosing Sample Time and Horizons

1-9

See Also
mpc | MPC Designer

More About
• “Specifying Constraints” on page 1-10

1 Introduction

1-10

Specifying Constraints

In this section...

“Input and Output Constraints” on page 1-10
“Constraint Softening” on page 1-12

Input and Output Constraints

By default, when you create a controller object using the mpc command, no constraints
exist. To include a constraint, set the appropriate controller property. The following table
summarizes the controller properties used to define most MPC Toolbox constraints. (MV
= plant manipulated variable; OV = plant output variable; MV increment = u(k) – u(k –
1).

To include this constraint Set this controller property Soften constraint by setting

Lower bound on ith MV MV(i).Min > -Inf MV(i).MinECR > 0

Upper bound on ith MV MV(i).Max < Inf MV(i).MaxECR > 0

Lower bound on ith OV OV(i).Min > -Inf OV(i).MinECR > 0

Upper bound on ith OV OV(i).Max < Inf OV(i).MaxECR > 0

Lower bound on ith MV
increment

MV(i).RateMin > -Inf MV(i).RateMinECR > 0

Upper bound on ith MV
increment

MV(i).RateMax < Inf MV(i).RateMaxECR > 0

To set the controller constraint properties using the MPC Designer app, in the Tuning

tab, click Constraints . In the Constraints dialog box, specify the constraint values.

See “Constraints” on page 2-7 for the equations describing the corresponding
constraints.

 Specifying Constraints

1-11

Tips

For MV bounds:

• Include known physical limits on the plant MVs as hard MV bounds.
• Include MV increment bounds when there is a known physical limit on the rate of

change, or your application requires you to prevent large increments for some other
reason.

• Do not include both hard MV bounds and hard MV increment bounds on the same
MV, as they can conflict. If both types of bounds are important, soften one.

For OV bounds:

1 Introduction

1-12

• Do not include OV bounds unless they are essential to your application. As an
alternative to setting an OV bound, you can define an OV reference and set its cost
function weight to keep the OV close to its setpoint.

• All OV constraints should be softened.
• Consider leaving the OV unconstrained for some prediction horizon steps. See “Time-

Varying Weights and Constraints” on page 2-26.
• Consider a time-varying OV constraint that is easy to satisfy early in the horizon,

gradually tapering to a more strict constraint. See “Time-Varying Weights and
Constraints” on page 2-26.

• Do not include OV constraints that are impossible to satisfy. Even if soft, such
constraints can cause unexpected controller behavior. For example, consider a SISO
plant with five sampling periods of delay. An OV constraint before the sixth prediction
horizon step is, in general, impossible to satisfy. You can use the review command to
check for such impossible constraints, and use a time-varying OV bound instead. See
“Time-Varying Weights and Constraints” on page 2-26.

Constraint Softening

Hard constraints are constraints that the quadratic programming (QP) solution must
satisfy. If it is mathematically impossible to satisfy a hard constraint at a given control
interval, k, the QP is infeasible. In this case, the controller returns an error status, and
sets the manipulated variables (MVs) to u(k) = u(k–1), i.e., no change. If the condition
leading to infeasibility is not resolved, infeasibility can continue indefinitely, leading to a
loss of control.

Disturbances and prediction errors are inevitable in practice. Therefore, a constraint
violation could occur in the plant even though the controller predicts otherwise. A
feasible QP solution does not guarantee that all hard constraints will be satisfied when
the optimal MV is used in the plant.

If the only constraints in your application are bounds on MVs, the MV bounds can be
hard constraints, as they are by default. MV bounds alone cannot cause infeasibility. The
same is true when the only constraints are on MV increments.

However, a hard MV bound with a hard MV increment constraint can lead to
infeasibility. For example, an upset or operation under manual control could cause the
actual MV used in the plant to exceed the specified bound during interval k–1. If the
controller is in automatic during interval k, it must return the MV to a value within the
hard bound. If the MV exceeds the bound by too much, the hard increment constraint can
make correcting the bound violation in the next interval impossible.

 Specifying Constraints

1-13

When there are hard constraints on plant outputs, or hard custom constraints (on linear
combinations of plant inputs and outputs, and the plant is subject to disturbances, QP
infeasibility is a distinct possibility.

All Model Predictive Control Toolbox™ constraints (except slack variable nonnegativity)
can be soft. When a constraint is soft, the controller can deem an MV optimal even
though it predicts a violation of that constraint. If all plant output, MV increment, and
custom constraints are soft (as they are by default), QP infeasibility does not occur.
However, controller performance can be substandard.

To soften a constraint, set the corresponding ECR value to a positive value (zero implies
a hard constraint). The larger the ECR value, the more likely the controller will deem
it optimal to violate the constraint in order to satisfy your other performance goals.
The Model Predictive Control Toolbox software provides default ECR values but, as for
the cost function weights, you might need to tune the ECR values in order to achieve
acceptable performance.

To understand how constraint softening works, suppose that your cost function uses
w wi j

u
i j

u
, ,= =

D

0 , giving both the MV and MV increments zero weight in the cost function.
Only the output reference tracking and constraint violation terms are nonzero. In this
case, the cost function is:

J z
w

s
r k i k y k i kk

j

n

i

p
i j
y

j
y j j

y

()
,

= +() - +()È
Î

˘
˚

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂= =
ÂÂ

1 1

| |

22

2+ ròòk .

Suppose that you have also specified hard MV bounds with V ij min
u
, () = 0 and

V ij max
u
, () = 0 . Then these constraints simplify to:

u i

s

u k i k

s

u i

s
i p j n

j min

j
u

j

j
u

j max

j
u

, ,
, : , :

()
£

+ -()
£

()
= =

1
1 1

|
uu.

Thus, the slack variable, ∊k, no longer appears in the above equations. You have also

specified soft constraints on plant outputs with V i
j min
y
, () > 0 and V i

j max
y
,

() > 0 .

1 Introduction

1-14

y i

s
V i

y k i k

s

y i

s
V

j min

j
y k j min

y j

j
y

j max

j
y k j m

,
,

,
,

()
- () £

+()
£

()
+ò ò

|
aax

y
yi i p j n() = =, : , : .1 1

Now, suppose that a disturbance has pushed a plant output above its specified upper
bound, but the QP with hard output constraints would be feasible, that is, all constraint
violations could be avoided in the QP solution. The QP involves a trade-off between
output reference tracking and constraint violation. The slack variable, ∊k, must be
nonnegative. Its appearance in the cost function discourages, but does not prevent, an
optimal ∊k > 0. A larger ρ

∊
 weight, however, increases the likelihood that the optimal ∊k

will be small or zero.

If the optimal ∊k > 0, at least one of the bound inequalities must be active (at equality). A

relatively large V i
j max
y
,

() makes it easier to satisfy the constraint with a small ∊k. In that

case,

y k i k

s

j

j
y

+()|

can be larger, without exceeding

y i

s
V i

j max

j
y k j max

y,

,
().

()
+ò

Notice that V i
j max
y
,

() does not set an upper limit on the constraint violation. Rather, it is

a tuning factor determining whether a soft constraint is easy or difficult to satisfy.

Tips

• Use of dimensionless variables simplifies constraint tuning. Define appropriate scale
factors for each plant input and output variable. See “Specifying Scale Factors” on
page 1-2.

• To indicate the relative magnitude of a tolerable violation, use the ECR parameter
associated with each constraint. Rough guidelines are as follows:

• 0 — No violation allowed (hard constraint)

 Specifying Constraints

1-15

• 0.05 — Very small violation allowed (nearly hard)
• 0.2 — Small violation allowed (quite hard)
• 1 — average softness
• 5 — greater-than-average violation allowed (quite soft)
• 20 — large violation allowed (very soft)

• Use the overall constraint softening parameter of the controller (controller object
property: Weights.ECR) to penalize a tolerable soft constraint violation relative
to the other cost function terms. Set the Weights.ECR property such that the
corresponding penalty is 1–2 orders of magnitude greater than the typical sum of
the other three cost function terms. If constraint violations seem too large during
simulation tests, try increasing Weights.ECR by a factor of 2–5.

Be aware, however, that an excessively large Weights.ECR distorts MV optimization,
leading to inappropriate MV adjustments when constraint violations occur. To check
for this, display the cost function value during simulations. If its magnitude increases
by more than 2 orders of magnitude when a constraint violation occurs, consider
decreasing Weights.ECR.

• Disturbances and prediction errors can lead to unexpected constraint violations in
a real system. Attempting to prevent these violations by making constraints harder
often degrades controller performance.

See Also
review

More About
• “Time-Varying Weights and Constraints” on page 2-26
• “Terminal Weights and Constraints” on page 2-30
• “Optimization Problem” on page 2-2

1 Introduction

1-16

Tuning Weights

In this section...

“Initial Tuning” on page 1-16
“Testing and Refinement” on page 1-18
“Robustness” on page 1-19

A model predictive controller design usually requires some tuning of the cost function
weights. This topic provides tuning tips. See “Optimization Problem” on page 2-2 for
details on the cost function equations.

Initial Tuning

• Before tuning the cost function weights, specify scale factors for each plant input
and output variable. Hold these scale factors constant as you tune the controller. See
“Specifying Scale Factors” on page 1-2 for more information.

• During tuning, use the sensitivity and review commands to obtain diagnostic
feedback. The sensitivity command is intended to help with cost function weight
selection.

• Change a weight by setting the appropriate controller property, as follows:

To change this weight Set this controller property Array size

OV reference tracking (wy) Weights.OV p-by-ny

MV reference tracking (wu) Weights.MV p-by-nu

MV increment suppression
(wΔu)

Weights.MVRate p-by-nu

Here, MV is a plant manipulated variable, and nu is the number of MVs. OV is a plant
output variable, and ny is the number of OVs. Finally,p is the number of steps in the
prediction horizon.

If a weight array contains n < p rows, the controller duplicates the last row to obtain a
full array of p rows. The default (n = 1) minimizes the number of parameters to be tuned,
and is therefore recommended. See “Time-Varying Weights and Constraints” on page
2-26 for an alternative.

 Tuning Weights

1-17

Tips for Setting OV Weights

• Considering the ny OVs, suppose that nyc must be held at or near a reference value
(setpoint). If the ith OV is not in this group, set Weights.OV(:,i) = 0.

• If nu ≥ nyc, it is usually possible to achieve zero OV tracking error at steady state, if at
least nyc MVs are not constrained. The default Weights.OV = ones(1,ny) is a good
starting point in this case.

If nu > nyc, however, you have excess degrees of freedom. Unless you take preventive
measures, therefore, the MVs may drift even when the OVs are near their reference
values.

• The most common preventive measure is to define reference values (targets)
for the number of excess MVs you have, nu – nyc. Such targets can represent
economically or technically desirable steady-state values.

• An alternative measure is to set w∆u > 0 for at least nu – nyc MVs to discourage the
controller from changing them.

• If nu < nyc, you do not have enough degrees of freedom to keep all required OVs
at a setpoint. In this case, consider prioritizing reference tracking. To do so, set
Weights.OV(:,i) > 0 to specify the priority for the ith OV. Rough guidelines for
this are as follows:

• 0.05 — Low priority: Large tracking error acceptable
• 0.2 — Below-average priority
• 1 — Average priority – the default. Use this value if nyc = 1.
• 5 — Above average priority
• 20 — High priority: Small tracking error desired

Tips for Setting MV Weights

By default, Weights.MV = zeros(1,nu). If some MVs have targets, the corresponding
MV reference tracking weights must be nonzero. Otherwise, the targets are ignored. If
the number of MV targets is less than (nu – nyc), try using the same weight for each. A
suggested value is 0.2, the same as below-average OV tracking. This value allows the
MVs to move away from their targets temporarily to improve OV tracking.

Otherwise, the MV and OV reference tracking goals are likely to conflict. Prioritize
by setting the Weights.MV(:,i) values in a manner similar to that suggested for

1 Introduction

1-18

Weights.OV (see above). Typical practice sets the average MV tracking priority lower
than the average OV tracking priority (e.g., 0.2 < 1).

If the ith MV does not have a target, set Weights.MV(:,i) = 0 (the default).

Tips for Setting MVRate Weights

• By default, Weights.MVRate = 0.1*ones(1,nu). The reasons for this default
include:

• If the plant is open-loop stable, large increments are unnecessary and probably
undesirable. For example, when model predictions are imperfect, as is always
the case in practice, more conservative increments usually provide more robust
controller performance, but poorer reference tracking.

• These values force the QP Hessian matrix to be positive-definite, such that the QP
has a unique solution if no constraints are active.

To encourage the controller to use even smaller increments for the ith MV, increase
the Weights.MVRate(:,i) value.

• If the plant is open-loop unstable, you might need to decrease the average
Weight.MVRate value to allow sufficiently rapid response to upsets.

Tips for Setting ECR Weights

See “Constraint Softening” on page 1-12 for tips regarding the Weights.ECR property.

Testing and Refinement

To focus on tuning individual cost function weights, perform closed-loop simulation tests
under the following conditions:

• No constraints.
• No prediction error. The controller prediction model should be identical to the plant

model. Both the MPC Designer app and the sim function provide the option to
simulate under these conditions.

Use changes in the reference and measured disturbance signals (if any) to force a
dynamic response. Based on the results of each test, consider changing the magnitudes of
selected weights.

One suggested approach is to use constant Weights.OV(:,i) = 1 to signify “average
OV tracking priority,” and adjust all other weights to be relative to this value. Use the

 Tuning Weights

1-19

sensitivity command for guidance. Use the review command to check for typical
tuning issues, such as lack of closed-loop stability.

See “Adjusting Disturbance and Noise Models” on page 2-15 for tests focusing on the
disturbance rejection ability of the controller.

Robustness

Once you have weights that work well under the above conditions, check for sensitivity to
prediction error. There are several ways to do so:

• If you have a nonlinear plant model of your system, such as a Simulink® model,
simulate the closed-loop performance at operating points other than that for which
the LTI prediction model applies.

• Alternatively, run closed-loop simulations in which the LTI model representing the
plant differs (such as in structure or parameter values) from that used at the MPC
prediction model. Both the MPC Designer app and the sim function provide the option
to simulate under these conditions. See “Test Controller Robustness” for an example.

If controller performance seems to degrade significantly in comparison to tests with
no prediction error, for an open-loop stable plant, consider making the controller less
aggressive.

In the MPC Designer app, on the Tuning tab, you can do so using the Closed-Loop
Performance slider.

Moving towards more robust control decreases OV/MV weights and increases MV Rate
weights, which leads to relaxed control of outputs and more conservative control moves.

At the command line, you can make the following changes to decrease controller
aggressiveness:

1 Introduction

1-20

• Increase all Weight.MVRate values by a multiplicative factor of order 2.
• Decrease all Weight.OV and Weight.MV values by dividing by the same factor.

After adjusting the weights, reevaluate performance both with and without prediction
error.

• If both are now acceptable, stop tuning the weights.
• If there is improvement but still too much degradation with model error, increase the

controller robustness further.
• If the change does not noticeably improve performance, restore the original weights

and focus on state estimator tuning (see “Adjusting Disturbance and Noise Models” on
page 2-15).

Finally, if tuning changes do not provide adequate robustness, consider one of the
following options:

• “Adaptive MPC” on page 5-2
• “Gain-Scheduled MPC” on page 7-2

Related Examples
• Tuning Controller Weights
• “Setting Targets for Manipulated Variables” on page 4-116

More About
• “Optimization Problem” on page 2-2
• “Specifying Constraints” on page 1-10
• “Adjusting Disturbance and Noise Models” on page 2-15

../../mpc/examples/tuning-controller-weights.html

2

Model Predictive Control Problem
Setup

• “Optimization Problem” on page 2-2
• “Adjusting Disturbance and Noise Models” on page 2-15
• “Custom State Estimation” on page 2-25
• “Time-Varying Weights and Constraints” on page 2-26
• “Terminal Weights and Constraints” on page 2-30
• “Constraints on Linear Combinations of Inputs and Outputs” on page 2-33
• “Manipulated Variable Blocking” on page 2-35
• “QP Solver” on page 2-38
• “Controller State Estimation” on page 2-42

2 Model Predictive Control Problem Setup

2-2

Optimization Problem

In this section...

“Overview” on page 2-2
“Standard Cost Function” on page 2-2
“Alternative Cost Function” on page 2-6
“Constraints” on page 2-7
“QP Matrices” on page 2-8
“Unconstrained Model Predictive Control” on page 2-13

Overview

Model Predictive Control solves an optimization problem – specifically, a quadratic
program (QP) – at each control interval. The solution determines the manipulated
variables (MVs) to be used in the plant until the next control interval.

This QP problem includes the following features:

• The objective, or “cost”, function — A scalar, nonnegative measure of controller
performance to be minimized.

• Constraints — Conditions the solution must satisfy, such as physical bounds on MVs
and plant output variables.

• Decision — The MV adjustments that minimizes the cost function while satisfying the
constraints.

The following sections describe these features in more detail.

Standard Cost Function

The standard cost function is the sum of four terms, each focusing on a particular aspect
of controller performance, as follows:

J z J z J z J z J zk y k u k u k k() = () + () + () + ()D ò .

 Optimization Problem

2-3

Here, zk is the QP decision. As described below, each term includes weights that help
you balance competing objectives. MPC controller provides default weights but you will
usually need to adjust them to tune the controller for your application.

Output Reference Tracking

In most applications, the controller must keep selected plant outputs at or near specified
reference values. MPC controller uses the following scalar performance measure:

J z
w

s
r k i k y k i ky k

j

n

i

p
i j
y

j
y j j

y

() = +() - +()È
Î

˘
˚

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

˛= =
Â Â

1 1

,
| |

ÔÔ

2

.

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• ny — Number of plant output variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L ò

• yj(k+i|k) — Predicted value of jth plant output at ith prediction horizon step, in
engineering units.

• rj(k+i|k) — Reference value for jth plant output at ith prediction horizon step, in
engineering units.

•
s

j
y — Scale factor for jth plant output, in engineering units.

•
w

i j
y
,

 — Tuning weight for jth plant output at ith prediction horizon step

(dimensionless).

The values ny, p, s
j
y , and w

i j
y
,

 are controller specifications, and are constant. The

controller receives rj(k+i|k) values for the entire prediction horizon. The controller
uses the state observer to predict the plant outputs. At interval k, the controller state
estimates and MD values are available. Thus, Jy is a function of zk only.

2 Model Predictive Control Problem Setup

2-4

Manipulated Variable Tracking

In some applications, i.e. when there are more manipulated variables than plant outputs,
the controller must keep selected manipulated variables (MVs) at or near specified target
values. MPC controller uses the following scalar performance measure:

J z
w

s
u k i k u k i ku k

j

n

i

p
i j
u

j
u j j target

u

()
,

,= +() - +()ÈÎ ˘̊
= =

-

Â Â
1 0

1

| |
ÏÏ
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

2

.

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L ò

• uj,target(k+i|k) — Target value for jth MV at ith prediction horizon step, in engineering
units.

•
s j
u — Scale factor for jth MV, in engineering units.

•
wi j

u
,

 — Tuning weight for jth MV at ith prediction horizon step (dimensionless).

The values nu, p, s j
u , and wi j

u
,

 are controller specifications, and are constant. The

controller receives uj,target(k+i|k) values for the entire horizon. The controller uses the
state observer to predict the plant outputs. Thus, Ju is a function of zk only.

Manipulated Variable Move Suppression

Most applications prefer small MV adjustments (moves). MPC uses the following scalar
performance measure:

J z
w

s
u k i k u k i ku k

j

n

i

p
i j

u

j
u j j

u

D

D

()
,= +() - + -()ÈÎ ˘̊

Ï
Ì
Ô

= =

-

Â Â
1 0

1

1| |

ÓÓÔ

¸
˝
Ô

Ǫ̂

2

.

 Optimization Problem

2-5

Here,

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L ò

•
s j
u — Scale factor for jth MV, in engineering units.

•
wi j

u
,

D — Tuning weight for jth MV movement at ith prediction horizon step
(dimensionless).

The values nu, p, s j
u , and wi j

u
,

D are controller specifications, and are constant. u(k–1|k) =

u(k–1), which are the known MVs from the previous control interval. JΔu is a function of
zk only.

In addition, a control horizon m < p (or MV blocking) constrains certain MV moves to be
zero.

Constraint Violation

In practice, constraint violations might be unavoidable. Soft constraints allow a feasible
QP solution under such conditions. MPC controller employs a dimensionless, nonnegative
slack variable, εk, which quantifies the worst-case constraint violation. (See “Constraints”
on page 2-7) The corresponding performance measure is:

J zk kò òò() = r 2
.

Here,

• zk — QP decision, given by:

2 Model Predictive Control Problem Setup

2-6

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L ò

• εk — Slack variable at control interval k (dimensionless).
• ρ

∊
 — Constraint violation penalty weight (dimensionless).

Alternative Cost Function

You can elect to use the following alternative to the standard cost function:

J z e k i Qe k i e k i R e k i uk

i

p

y
T

y u
T

u u() = +() +()È
Î

˘
˚

+ +() +()È
Î

˘
˚

+
=

-

Â
0

1

D TT
u kk i R u k i+() +()È

Î
˘
˚{ } +D D ròò

2
.

Here, Q (ny-by-ny), Ru, and RΔu (nu-by-nu) are positive-semi-definite weight matrices, and:

e i k S r k i k y k i k

e i k S u k

y y

u u target

+() = + +() - + +ÈÎ ˘̊

+() = +

-

-

1

1

1 1| (|)

ii k u k i k

u k i S u k i k u k i ku

|

|

() - +ÈÎ ˘̊

+() = +() - + -ÈÎ ˘̊-

(|)

(|) .D 1 1

Also,

• Sy — Diagonal matrix of plant output variable scale factors, in engineering units.
• Su — Diagonal matrix of MV scale factors in engineering units.
• r(k+1|k) — ny plant output reference values at the ith prediction horizon step, in

engineering units.
• y(k+1|k) — ny plant outputs at the ith prediction horizon step, in engineering units.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L ò

• utarget(k+i|k) — nu MV target values corresponding to u(k+i|k), in engineering units.

 Optimization Problem

2-7

Output predictions use the state observer, as in the standard cost function.

The alternative cost function allows off-diagonal weighting, but requires the weights to
be identical at each prediction horizon step.

The alternative and standard cost functions are identical if the following conditions hold:

• The standard cost functions employs weights w
i j
y
,

, wi j
u
,

, and wi j
u

,

D that are constant

with respect to the index, i = 1:p.
• The matrices Q, Ru, and RΔu are diagonal with the squares of those weights as the

diagonal elements.

Constraints

Certain constraints are implicit. For example, a control horizon m < p (or MV blocking)
forces some MV increments to be zero, and the state observer used for plant output
prediction is a set of implicit equality constraints. Explicit constraints that you can
configure are described below.

Bounds on Plant Outputs, MVs, and MV Increments

The most common MPC constraints are bounds, as follows.

y i

s
V i

y k i k

s

y i

s
V

j min

j
y k j min

y j

j
y

j max

j
y k j m

,
,

,
,

()
- () £

+()
£

()
+ò ò

|
aax

y
y

j min

j
u k j min

u j

i i p j n

u i

s
V i

u k i

(), : , :

()
,

,

= =

()
- £

+ -

1 1

ò
11

1 1
|k

s

u i

s
V i i p j n

u

j
u

j max

j
u k j max

u
u

j

()
£

()
+ = =

,
,

,

(), : , :ò

D mmin

j
u k j min

u j

j
u

j max

j
u k

i

s
V i

u k i k

s

u i

s
V

()
- £

+ -()
£

()
+ò ò,

,
()D

D D1|
jj max

u
ui i p j n, (), : , : .D

= =1 1

Here, the V parameters (ECR values) are dimensionless controller constants analogous to
the cost function weights but used for constraint softening (see “Constraint Softening” on
page 1-12). Also,

• ∊k — Scalar QP slack variable (dimensionless) used for constraint softening.

2 Model Predictive Control Problem Setup

2-8

•
s

j
y — Scale factor for jth plant output, in engineering units.

•
s j
u — Scale factor for jth MV, in engineering units.

• yj,min(i), yj,max(i) — lower and upper bounds for jth plant output at ith prediction
horizon step, in engineering units.

• uj,min(i), uj,max(i) — lower and upper bounds for jth MV at ith prediction horizon step,
in engineering units.

• Δuj,min(i), Δuj,max(i) — lower and upper bounds for jth MV increment at ith prediction
horizon step, in engineering units.

Except for the slack variable non-negativity condition, all of the above constraints
are optional and are inactive by default (i.e., initialized with infinite limiting values).
To include a bound constraint, you must specify a finite limit when you design the
controller.

QP Matrices

This section describes the matrices associated with the model predictive control
optimization problem described in “Optimization Problem” on page 2-2.

Prediction

Assume that the disturbance models described in “Input Disturbance Model” is unit gain,
for example, d(k)=nd(k) is a white Gaussian noise). You can denote this problem as

x
x

x
A

A B C

A
B

B
B

Bv
B

B

d

d
u

u
v d

d¨
È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨, , , ,

0 0 0

DD

B
C C D Cd

È

Î
Í

˘

˚
˙ ¨ ÈÎ ˘̊

Then, the prediction model is:

x(k+1) = Ax(k) +Buu(k) +Bvv(k)+Bdnd(k)

y(k) = Cx(k) +Dvv(k) +Ddnd(k)

Next, consider the problem of predicting the future trajectories of the model performed at
time k=0. Set nd(i)=0 for all prediction instants i, and obtain

 Optimization Problem

2-9

y i C A x A B u u j B v hi i
u

j

h

v(|) () () () ()0 0 11

0

= + - +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
Ê

Ë
Á
Á

ˆ

¯

-

=
Â D ˜̃

˜

È

Î

Í
Í

˘

˚

˙
˙

+
=

-

Â
h

i

vD v i

0

1

()

This equation gives the solution

y

y p

S x S u S

u

u p

x u u

()

()

() ()

()

()

1

0 1

0

1

1L L

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= + - +

-

È

Î

Í
Í
Í

˘

˚

D

D

˙̇
˙
˙

+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

H

v

v p

v

()

()

0

L

where

S

CA

CA

CA

S

CB

CB CAB

CA B

x

p

u

u

u u

h
u

h

pn ny x=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+

Œ¬ ¥

=

2

1
L

L,

00

1

0 0

0

p

u

u

u u u

pn ny u

S

CB

CB CAB CB

-

Â

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

=

+

Œ¬ ¥

L

L

L L L L

CCA B CA B CB

pn pn

H

h
u

h

p
h

u
h

p

u

v

y u

=

-

=

-

Â Â

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

¥
Œ ¬

0

1

0

2

L

==

È

Î

Í
Í
Í
Í
Í

˘

- - -

CB D

CAB CB D

CA B CA B CA B D

v v

v v v

p
v

p
v

p
v v

0 0

0

1 2 3

L

L

L L L L L

L ˚̊

˙
˙
˙
˙
˙

¥ +
Œ ¬pn p ny v()

.
1

Optimization Variables

Let m be the number of free control moves, and let z= [z0; ...; zm–1]. Then,

D

D

u

u p

J

z

z

M

m

()

()

0

1

0

1

L L

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙-

2 Model Predictive Control Problem Setup

2-10

where JM depends on the choice of blocking moves. Together with the slack variable ɛ,
vectors z0, ..., zm–1 constitute the free optimization variables of the optimization problem.
In the case of systems with a single manipulated variables, z0, ..., zm–1 are scalars.

Consider the blocking moves depicted in the following graph.

Blocking Moves: Inputs and Input Increments for moves = [2 3 2]

This graph corresponds to the choice moves=[2 3 2], or, equivalently,
u(0)=u(1), u(2)=u(3)=u(4), u(5)=u(6), Δ u(0)=z0, Δ u(2)=z1, Δ u(5)=z2, Δ u(1)=Δ u(3)=Δ
u(4)=Δ u(6)=0.

 Optimization Problem

2-11

Then, the corresponding matrix JM is

J

I

I

I

M
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

0 0

0 0 0

0 0

0 0 0

0 0 0

0 0

0 0 0

Cost Function

• “Standard Form” on page 2-11
• “Alternative Cost Function” on page 2-12

Standard Form

The function to be optimized is

J z

u

u p

u

u p

target

target

(,)

()

()

()

()

e =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-

È

Î

Í
Í
Í

˘0

1

0

1

L L

˚̊

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜ -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

T

u

target

targe

W

u

u p

u

u

2

0

1

0()

()

()

L L

tt

T

u

p

u

u p

W

u

()

()

()-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙1

0

1

2

D

D

D

DL

(()

()

()

()

()

0

1

1 1

L

L

Du p

y

y p

r

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- LL L L

r p

W

y

y p

r

r p

T

y

()

()

()

()

(

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-2

1 1

))

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+ r ee
2

where

Wu w w w w w wu u
n

u
p
u

p
u

pu
=

- - -
diag

0 1 0 2 0 1 1 1 2 1, , , , ,
, ,..., ,..., , ,...,

,,

, , , ,
, ,..., ,..., ,

n
u

u u
n
u

p
u

p

u

W u w w w w w
u

()
=

- -D
D D D Ddiag
0 1 0 2 0 11 1,, ,

, , , ,

,...,

, ,..., ,...,

2 1

1 1 1 2 1

D Du
p n
u

y y
n

y
p

w

w w w w

u

Wy
y

-()
= diag

11 2
y

p
y

p n
yw w

y
, ,...,

, ,()

Finally, after substituting u(k), Δu(k), y(k), J(z) can be rewritten as

2 Model Predictive Control Problem Setup

2-12

J z z K z

r

r p

K

v

v p

T
u

T

r(,)

()

()

()

()

e r ee= + +
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘
2

2

1 0

D L L

˚̊

˙
˙
˙

+ - +
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

T

v
T

u

target

target

T

utK u K

u

u p

K x()

()

()

(1

0

1

L 00)
T

xK z

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

+ constant

Note You may want the QP problem to remain strictly convex. If the condition number
of the Hessian matrix KΔU is larger than 1012, add the quantity 10*sqrt(eps)
on each diagonal term. You can use this solution only when all input rates are
unpenalized (WΔu=0) (see “Weights” in the Model Predictive Control Toolbox reference
documentation).

Alternative Cost Function

If you are using the alternative cost function shown in “Alternative Cost Function” on
page 2-6, Equation 2-3, then Equation 2-2 is replaced by the following:

W R R

W R R

W Q

u u u

u u u

y

= ()

= ()

=

blkdiag

blkdiag

blkdiag

,...,

,...,

, .

D D D

...,Q()

In this case, the block-diagonal matrices repeat p times, for example, once for each step
in the prediction horizon.

You also have the option to use a combination of the standard and alternative forms. See
“Weights” in the Model Predictive Control Toolbox reference documentation for more
details.

Constraints

Next, consider the limits on inputs, input increments, and outputs along with the
constraint ɛ≥ 0.

 Optimization Problem

2-13

y V

y p V p

u V

u

y

y

u

min min

min min

min min

min

() ()

() ()

() ()

(

1 1

0 0

-

-

-

e

e

e

L

L

pp V p

u V

u p V p

u

u

u

- - -

-

- - -

1 1

0 0

1

) ()

() ()

() (

min

min min

min min

e

e

e

D

D

D

D

L

11

1

0

1

)

()

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

£

-

y

y p

u

u p

u

L

L

D (()

()

() ()max max

0

1

1 1

L

Du p

y V y

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

£

+e

LL

L

y p V p

u V

u p V p

y

u

u

max max

max max

max max

() ()

() ()

() ()

+

+

- + -

e

e

e

0 0

1 1

DD

D

D

D

u V

u p V p

u

u

max max

max max

() ()

() ()

0 0

1 1

+

- + -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

e

e

LÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

Note To reduce computational effort, the controller automatically eliminates extraneous
constraints, such as infinite bounds. Thus, the constraint set used in real time may be
much smaller than that suggested in this section.

Similar to what you did for the cost function, you can substitute u(k), Δu(k), y(k), and
obtain

M z M M M

v

v p

M u M xz v u x+ £ +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ - +ee lim

()

()

() ()

0

1 0L

In this case, matrices Mz,Mɛ
,Mlim,Mv,Mu,Mx are obtained from the upper and lower

bounds and ECR values.

Unconstrained Model Predictive Control

The optimal solution is computed analytically

z K

r

r p

K

v

v p

K uu

T

r v*

()

()

()

()

(= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ --
D

1

1 0

1L L))

()

()

()
T

u

target

target

T

ut
T

xK

u

u p

K x K+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

Ê

Ë

Á
Á
ÁÁ

ˆ0

1

0L

¯̄

˜
˜
˜̃

T

2 Model Predictive Control Problem Setup

2-14

and the model predictive controller sets Δu(k)=z*0, u(k)=u(k–1)+Δu(k).

More About
• “Adjusting Disturbance and Noise Models” on page 2-15
• “Time-Varying Weights and Constraints” on page 2-26
• “Terminal Weights and Constraints” on page 2-30

 Adjusting Disturbance and Noise Models

2-15

Adjusting Disturbance and Noise Models

A model predictive control requires the following to reject unknown disturbances
effectively:

• Application-specific disturbance models
• Measurement feedback to update the controller state estimates

You can modify input and output disturbance models, and the measurement noise model
using the MPC Designer app and at the command line. You can then adjust controller
tuning weights to improve disturbance rejection.

In this section...

“Overview” on page 2-15
“Output Disturbance Model” on page 2-16
“Measurement Noise Model” on page 2-18
“Input Disturbance Model” on page 2-20
“Restrictions” on page 2-22
“Disturbance Rejection Tuning” on page 2-23

Overview

MPC attempts to predict how known and unknown events affect the plant output
variables (OVs). Known events are changes in the measured plant input variables (MV
and MD inputs). The plant model of the controller predicts the impact of these events,
and such predictions can be quite accurate. For more information, see“MPC Modeling”.

The impacts of unknown events appear as errors in the predictions of known events.
These errors are, by definition, impossible to predict accurately. However, an ability
to anticipate trends can improve disturbance rejection For example, suppose that the
control system has been operating at a near-steady condition with all measured OVs
near their predicted values. There are no known events, but one or more of these OVs
suddenly deviates from its prediction. The controller disturbance and measurement
models allow you to provide guidance on how to handle such errors.

2 Model Predictive Control Problem Setup

2-16

Output Disturbance Model

Suppose that your plant model includes no unmeasured disturbance inputs. The MPC
controller then models unknown events using an output disturbance model. As shown
in “MPC Modeling”, the output disturbance model is independent of the plant, and its
output adds directly to that of the plant model.

Using the MPC Designer app, you can specify the type of noise that is expected to affect
each plant OV. In the MPC Designer app, on the Tuning tab, in the Design section,
click Estimation Models > Output Disturbance Model. In the Output Disturbance
Model dialog box, in the Update the model drop-down list, select specifying a custom
model channel by channel.

 Adjusting Disturbance and Noise Models

2-17

In the Specifications section, in the Disturbance column, select one of the following
disturbance models for each output:

• White Noise — Prediction errors are due to random zero-mean white noise. This
option implies that the impact of the disturbance is short-lived, and therefore requires
a modest, short-term controller response.

2 Model Predictive Control Problem Setup

2-18

• Random Step-like — Prediction errors are due to a random step-like disturbance,
which lasts indefinitely, maintaining a roughly constant magnitude. Such a
disturbance requires a more aggressive, sustained controller response.

• Random Ramp-like — Prediction errors are due to a random ramp-like disturbance,
which lasts indefinitely and tends to grow with time. Such a disturbance requires an
even more aggressive controller response.

Model Predictive Control Toolbox software represents each disturbance type as a model
in which white noise, with zero mean and unit variance, enters a SISO dynamic system
consisting of one of the following:

• A static gain — For a white noise disturbance
• An integrator in series with a static gain — For a step-like disturbance
• Two integrators in series with a static gain — For a ramp-like disturbance

You can also specify the white noise input Magnitude for each disturbance model,
overriding the assumption of unit variance. As you increase the noise magnitude, the
controller responds more aggressively to a given prediction error. The specified noise
magnitude corresponds to the static gain in the SISO model for each type of noise.

You can also view or modify the output disturbance model from the command line using
getoutdist and setoutdist respectively.

Measurement Noise Model

MPC also attempts to distinguish disturbances, which require a controller response, from
measurement noise, which the controller should ignore. Using the MPC Designer app,
you can specify the expected measurement noise magnitude and character. In the MPC
Designer app, on the Tuning tab, in the Design section, click Estimation Models >
Measurement Noise Model. In the Model Noise Model dialog box, in the Update the
model drop-down list, select specifying a custom model channel by channel.

In the Specifications section, in the Disturbance column, select a noise model for each
measured output channel. The noise options are the same as the output disturbance
model options.

 Adjusting Disturbance and Noise Models

2-19

White Noise is the default option and, in nearly all applications, should provide
adequate performance.

When you include a measurement noise model, the controller considers each prediction
error to be a combination of disturbance and noise effects. Qualitatively, as you increase
the specified noise Magnitude, the controller attributes a larger fraction of each
prediction error to noise, and it responds less aggressively. Ultimately, the controller

2 Model Predictive Control Problem Setup

2-20

stops responding to prediction errors and only changes its MVs when you change the OV
or MV reference signals.

Input Disturbance Model

When your plant model includes unmeasured disturbance (UD) inputs, the controller
can use an input disturbance model in addition to the standard output disturbance
model. The former provides more flexibility and is generated automatically by default.
If the chosen input disturbance model does not appear to allow complete elimination of
sustained disturbances, an output disturbance model is also added by default.

As shown in “MPC Modeling”, the input disturbance model consists of one or more
white noise signals, with unit variance and zero mean, entering a dynamic system. The
outputs of this system are the UD inputs to the plant model. In contrast to the output
disturbance model, input disturbances affect the plant outputs in a more complex way as
they pass through the plant model dynamics.

As with the output disturbance model, you can use the MPC Designer app to specify
the type of disturbance you expect for each UD input. In the MPC Designer app, on the
Tuning tab, in the Design section, click Estimation Models > Input Disturbance
Model. In the Input Disturbance Model dialog box, in the Update the model drop-down
list, select specifying a custom model channel by channel.

 Adjusting Disturbance and Noise Models

2-21

In the Specifications section, in the Disturbance column, select a noise model for
each measured output channel. The input disturbance model options are the same as the
output disturbance model options.

A common approach is to model unknown events as disturbances adding to the plant
MVs. These disturbances, termed load disturbances in many texts, are realistic in
that some unknown events are failures to set the MVs to the values requested by the
controller. You can create a load disturbance model as follows:

2 Model Predictive Control Problem Setup

2-22

1 Begin with an LTI plant model, Plant, in which all inputs are known (MVs and
MDs).

2 Obtain the state-space matrices of Plant. For example:

[A,B,C,D] = ssdata(Plant);

3 Suppose that there are nu MVs. Set Bu = columns of B corresponding to the MVs.
Also, set Du = columns of D corresponding to the MVs.

4 Redefine the plant model to include nu additional inputs. For example:

Plant.b = [B Bu];

Plant.d = [D Du]);

5 To indicate that the new inputs are unmeasured disturbances, use setmpcsignals,
or set the Plant.InputGroup property.

This procedure adds load disturbance inputs without increasing the number of states in
the plant model.

By default, given a plant model containing load disturbances, the Model Predictive
Control Toolbox software creates an input disturbance model that generates nym step-like
load disturbances. If nym > nu, it also creates an output disturbance model with integrated
white noise adding to (nym – nu) measured outputs. If nym < nu, the last (nu – nym) load
disturbances are zero by default. You can modify these defaults using the MPC Designer
app.

You can also view or modify the input disturbance model from the command line using
getindist and setindist respectively.

Restrictions

As discussed in “Controller State Estimation” on page 2-42, the plant, disturbance,
and noise models combine to form a state observer, which must be detectable using the
measured plant outputs. If not, the software displays a command-window error message
when you attempt to use the controller.

This limitation restricts the form of the disturbance and noise models. If any models are
defined as anything other than white noise with a static gain, their model states must be
detectable. For example, an integrated white noise disturbance adding to an unmeasured
OV would be undetectable. The MPC Designer app prevents you from choosing such a
model. Similarly, the number of measured disturbances, nym, limits the number of step-
like UD inputs from an input disturbance model.

 Adjusting Disturbance and Noise Models

2-23

By default, the Model Predictive Control Toolbox software creates detectable models. If
you modify the default assumptions (or change nym) and encounter a detectability error,
you can revert to the default case.

Disturbance Rejection Tuning

During the design process, you can tune the disturbance rejection properties of the
controller.

1 Before any controller tuning, define scale factors for each plant input and output
variable (see “Specifying Scale Factors” on page 1-2). In the context of disturbance
and noise modeling, this makes the default assumption of unit-variance white noise
inputs more likely to yield good performance.

2 Initially, keep the disturbance models in their default configuration.
3 After tuning the cost function weights (see “Tuning Weights” on page 1-16), test

your controller response to an unmeasured disturbance input other than a step
disturbance at the plant output. Specifically, if your plant model includes UD inputs,
simulate a disturbance using one or more of these. Otherwise, simulate one or more
load disturbances, that is, a step disturbance added to a designated MV. Both the
MPC Designer app and the sim command support such simulations.

4 If the response in the simulations is too sluggish, try one or more of the following to
produce more aggressive disturbance rejection:

• Increase all disturbance model gains by a multiplicative factor. In the MPC
Designer app, do this by increasing the magnitude of each disturbance. If this
helps but is insufficient, increase the magnitude further.

• Decrease the measurement noise gains by a multiplicative factor. In the MPC
Designer app, do this by increasing the measurement noise magnitude. If this
helps but is insufficient, increase the magnitude further.

• In the MPC Designer app, in the Tuning tab, drag the State Estimation slider
to the right. Moving towards Faster state estimation simultaneously increases
the gains for disturbance models and decreases the gains for noise models.

2 Model Predictive Control Problem Setup

2-24

If this helps but is insufficient, drag the slider further to the right.
• Change one or more disturbances to model that requires a more aggressive

controller response. For example, change the model from white noise disturbance
to a step-like disturbance.

Note: Changing the disturbances in this way adds states to disturbance model,
which can cause violations of the state observer detectability restriction.

5 If the response is too aggressive, and in particular, if the controller is not robust
when its prediction of known events is inaccurate, try reversing the previous
adjustments.

See Also
getindist | getoutdist | MPC Designer | setindist | setmpcsignals |
setoutdist

Related Examples
• “Design Controller Using MPC Designer”

More About
• “MPC Modeling”
• “Controller State Estimation” on page 2-42

 Custom State Estimation

2-25

Custom State Estimation

The Model Predictive Control Toolbox software allows the following alternatives to the
default state estimation approach:

• You can override the default Kalman gains, L and M. Obtain the default values using
getEstimator. Then, use setEstimator to override those values. These commands
assume that the columns of L and M are in the engineering units for the measured
plant outputs. Internally, the software converts them to dimensionless form.

• You can use the custom estimation option. This skips all Kalman gain calculations.
When the controller operates, at each control interval you must use an external
procedure to estimate the controller states, xc(k|k), providing this to the controller.

Note: You cannot use custom state estimation with the MPC Designer app.

Related Examples
• Using Custom State Estimation

More About
• “Controller State Estimation” on page 2-42

../../mpc/examples/using-custom-state-estimation.html

2 Model Predictive Control Problem Setup

2-26

Time-Varying Weights and Constraints

In this section...

“Time-Varying Weights” on page 2-26
“Time-Varying Constraints” on page 2-28

Time-Varying Weights

As explained in “Optimization Problem” on page 2-2, the wy, wu, and w∆u weights can
change from one step in the prediction horizon to the next. Such a time-varying weight is
an array containing p rows, where p is the prediction horizon, and either ny or nu columns
(number of OVs or MVs).

Using time-varying weights provides additional tuning possibilities. However, it
complicates tuning. Recommended practice is to use constant weights unless your
application includes unusual characteristics. For example, an application requiring
terminal weights must employ time-varying weights. See “Terminal Weights and
Constraints” on page 2-30.

You can specify time-varying weights in the MPC Designer app. In the Weights dialog
box, specify a time-varying weight as a vector. Each element of the vector corresponds
to one step in the prediction horizon. If the length of the vector is less than p, the last
weight value applies for the remainder of the prediction horizon.

 Time-Varying Weights and Constraints

2-27

Note: For any given input channel, you can specify different vector lengths for Rate
Weight and Weight. However, if you specify a time-varying Weight for any input
channel, you must specify a time-varying Weight for all inputs using the same length
weight vectors. Similarly, all input Rate Weight values must use the same vector
length.

Also, if you specify a time-varying Weight for any output channel, you must specify a
time-varying Weight for all output using the same length weight vectors.

2 Model Predictive Control Problem Setup

2-28

Time-Varying Constraints

When bounding an MV, OV, or MV increment, you can use a different bound value at
each prediction-horizon step. To do so, specify the bound as a vector of up to p values,
where p is the prediction horizon length (number of control intervals). If you specify n < p
values, the nth value applies for the remaining p – n steps.

You can remove constraints at selected steps by specifying Inf (or -Inf).

If plant delays prevent the MVs from affecting an OV during the first d steps of the
prediction horizon and you must include bounds on that OV, leave the OV unconstrained
for the first d steps.

You can specify time-varying constraints in the MPC Designer app. In the Constraints
dialog box, specify a vector for each time-varying constraint.

 Time-Varying Weights and Constraints

2-29

Related Examples
• Varying Input and Output Constraints

More About
• “Optimization Problem” on page 2-2
• “Terminal Weights and Constraints” on page 2-30

../../mpc/examples/varying-input-and-output-constraints.html

2 Model Predictive Control Problem Setup

2-30

Terminal Weights and Constraints

Terminal weights are the quadratic weights Wy on y(t+p) and Wu on u(t + p – 1). The
variable p is the prediction horizon. You apply the quadratic weights at time k +p only,
such as the prediction horizon’s final step. Using terminal weights, you can achieve
infinite horizon control that guarantees closed-loop stability. However, before using
terminal weights, you must distinguish between problems with and without constraints.

Terminal constraints are the constraints on y(t + p) and u(t + p – 1), where p is the
prediction horizon. You can use terminal constraints as an alternative way to achieve
closed-loop stability by defining a terminal region.

Note: You can use terminal weights and constraints only at the command line. See
setterminal.

For the relatively simple unconstrained case, a terminal weight can make the finite-
horizon Model Predictive Controller behave as if its prediction horizon were infinite. For
example, the MPC controller behavior is identical to a linear-quadratic regulator (LQR).
The standard LQR derives from the cost function:

J u x k i Qx k i u k i Ru k iT T

i

() () () () ()= + + + + - + -

=

•

Â 1 1

1

where x is the vector of plant states in the standard state-space form:

x(k + 1) = Ax + Bu(k)

The LQR provides nominal stability provided matrices Q and R meet certain conditions.
You can convert the LQR to a finite-horizon form as follows:

J u x k i Qx k i u k i Ru k i x k p Q xT T

i

p
T

p() [() () () ()] ()= + + + + - + - + +

=

-

Â 1 1

1

1

(()k p+

where Qp , the terminal penalty matrix, is the solution of the Riccati equation:

Q A Q A A Q B B Q B R B Q A Qp
T

p
T

p
T

p
T

p= - + +
-

()
1

 Terminal Weights and Constraints

2-31

You can obtain this solution using the lqr command in Control System Toolbox™
software.

In general, Qp is a full (symmetric) matrix. You cannot use the “Standard Cost Function”
on page 2-2 to implement the LQR cost function. The only exception is for the first p
– 1 steps if Q and R are diagonal matrices. Also, you cannot use the “Alternative Cost
Function” on page 2-6 because it employs identical weights at each step in the horizon.
Thus, by definition, the terminal weight differs from those in steps 1 to p – 1. Instead,
use the following steps:

1 Augment the model (Equation 2-7) to include the weighted terminal states as
auxiliary outputs:

yaug(k) = Qcx(k)

where Qc is the Cholesky factorization of Qp such that Qp = Qc
TQc.

2 Define the auxiliary outputs yaug as unmeasured, and specify zero weight to them.
3 Specify unity weight on yaug at the last step in the prediction horizon using

setterminal.

To make the Model Predictive Controller entirely equivalent to the LQR, use a control
horizon equal to the prediction horizon. In an unconstrained application, you can use
a short horizon and still achieve nominal stability. Thus, the horizon is no longer a
parameter to be tuned.

When the application includes constraints, the horizon selection becomes important. The
constraints, which are usually softened, represent factors not considered in the LQR cost
function. If a constraint becomes active, the control action deviates from the LQR (state
feedback) behavior. If this behavior is not handled correctly in the controller design, the
controller may destabilize the plant.

For an in-depth discussion of design issues for constrained systems see [1]. Depending
on the situation, you might need to include terminal constraints to force the plant states
into a defined region at the end of the horizon, after which the LQR can drive the plant
signals to their targets. Use setterminal to add such constraints to the controller
definition.

The standard (finite-horizon) Model Predictive Controller provides comparable
performance, if the prediction horizon is long. You must tune the other controller
parameters (weights, constraint softening, and control horizon) to achieve this
performance.

2 Model Predictive Control Problem Setup

2-32

Tip Robustness to inaccurate model predictions is usually a more important factor than
nominal performance in applications.

References

[1] Rawlings, J. B., and David Q. Mayne “Model Predictive Control: Theory and Design”
Nob Hill Publishing, 2010.

See Also
setterminal

Related Examples
• “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”
• “Providing LQR Performance Using Terminal Penalty” on page 4-83

 Constraints on Linear Combinations of Inputs and Outputs

2-33

Constraints on Linear Combinations of Inputs and Outputs

You can constrain linear combinations of plant input and output variables. For example,
you can constrain a particular manipulated variable (MV) to be greater than a linear
combination of two other MVs. The general form of such constraints is the following:

Eu k i k Fy k i k Sv k i k G Vk+() + +() + + £ +| | (|) .ò

• ∊k — QP slack variable used for constraint softening (See “Constraint Softening” on
page 1-12)

• u(k+i|k) — nu MV values, in engineering units
• y(k+i|k) — ny predicted plant outputs, in engineering units
• v(k+i|k) — nv measured plant disturbance inputs, in engineering units
• E, F, S, G, and V are constants

As with the QP cost function, output prediction using the state observer makes these
constraints a function of the QP decision.

Custom constraints are dimensional by default.

You can update custom constraints at run time by calling setconstraint before
calling mpcmove. However, updating the custom constraint matrices at run time is not
supported in Simulink.

Note: Using custom constraints is not supported in the MPC Designer app.

See Also
getconstraint | setconstraint

Related Examples
• Using Custom Input and Output Constraints
• Nonlinear Blending Process with Custom Constraints

More About
• “Optimization Problem” on page 2-2

../../mpc/examples/using-custom-input-and-output-constraints.html
../../mpc/examples/nonlinear-blending-process-with-custom-constraints.html

2 Model Predictive Control Problem Setup

2-34

• “Run-Time Constraint Updating”

 Manipulated Variable Blocking

2-35

Manipulated Variable Blocking

Blocking is an alternative to the simpler control horizon concept (see “Choosing Sample
Time and Horizons” on page 1-6). It has many of the same benefits. It also provides more
tuning flexibility and potential to smooth MV adjustments. To manipulated variable
blocking, you divide the prediction horizon into a series of blocks. The controller then
holds the manipulated variable constant within each block.

A recommended approach to blocking is as follows:

• Divide the prediction horizon into 3-5 blocks.
• Try the following alternatives

• Equal block sizes (one-fifth to one-third of the prediction horizon, p)
• Block sizes increasing. Example, with p = 20, three blocks of duration 3, 7 and 10

intervals.

To use manipulated variable blocking, specify your control horizon as a vector of block
sizes. For example, the following figure represent control moves for a control horizon of p
= [2 3 2]:

2 Model Predictive Control Problem Setup

2-36

For each block, the manipulated variable, u, is constant, that is:

• u(0) = u(1)
• u(2) = u(3) = u(4)
• u(5) = u(6)

Test the resulting controller in the same way that you test cost function weights. See
“Tuning Weights” on page 1-16.

 Manipulated Variable Blocking

2-37

Related Examples
• “Design MPC Controller for Plant with Delays”

More About
• “Optimization Problem” on page 2-2
• “Tuning Weights” on page 1-16

2 Model Predictive Control Problem Setup

2-38

QP Solver

The model predictive controller QP solver converts an MPC optimization problem to the
general form QP problem

Min fx Hx x
x

()
1

2

œ œ

+

subject to the linear inequality constraints

Ax b≥

where

• x is the solution vector.
• H is the Hessian matrix. This matrix is constant when using implicit MPC without

online weight changes.
• A is a matrix of linear constraint coefficients. This matrix is constant when using

implicit MPC.
• b and f are vectors.

At the beginning of each control interval, the controller computes H, f, A, and b or, if they
are constant, retrieves their precomputed values.

The toolbox uses the KWIK algorithm [1] to solve the QP problem, which requires
the Hessian to be positive definite. In the first control step, KWIK uses a cold start,
in which the initial guess is the unconstrained solution described in “Unconstrained
Model Predictive Control” on page 2-13. If x satisfies the constraints, it is the optimal
QP solution, x*, and the algorithm terminates. Otherwise, at least one of the linear
inequality constraints must be satisfied as an equality. In this case, KWIK uses an
efficient, numerically robust strategy to determine the active constraint set satisfying
the standard optimization conditions. In the following control steps, KWIK uses a warm
start. In this case, the active constraint set determined at the previous control step
becomes the initial guess for the next.

Although KWIK is robust, consider the following:

 QP Solver

2-39

• One or more linear constraints can be violated slightly due to numerical round-off
errors. The toolbox employs a nonadjustable relative tolerance. This tolerance allows
constraint violations of 10-6 times the magnitude of each term. Such violations are
considered normal and do not generate warning messages.

• The toolbox also uses a nonadjustable tolerance when testing for an optimal solution.
• The search for the active constraint set is an iterative process. If the iterations reach

a problem-dependent maximum, the algorithm terminates. For some controller
configurations, the default maximum iterations can be very large, which can make the
QP solver appear to stop responding (see “Optimizer”).

• If your problem includes hard constraints, these constraints can be infeasible
(impossible to satisfy). If the algorithm detects infeasibility, it terminates
immediately.

In the last two situations, with an abnormal outcome to the search, the controller retains
the last successful control output. For more information, see, the mpcmove command.
You can detect an abnormal outcome and override the default behavior as you see fit.

Custom QP Application

To access the built-in KWIK solver for applications that require solving online QP
problems, use the mpcqpsolver command. This option is useful for:

• Advanced MPC applications that are beyond the scope of Model Predictive Control
Toolbox software.

• Custom QP applications, including applications that require code generation.

Custom QP Solver

The Model Predictive Control Toolbox enables you to specify a custom QP solver for your
MPC controller. This solver is called in place of the built-in qpkwik solver at each control
interval. This option is useful for:

• Validating your simulation results with a third-party solver.
• Large MPC problems where the built-in KWIK solver runs slowly or fails to find a

feasible solution.

To use a custom QP solver, you must:

2 Model Predictive Control Problem Setup

2-40

• Set the Optimizer.CustomSolver property of your MPC controller to true.
• Provide an mpcCustomSolver.m file on the MATLAB® path that solves the general

form QP optimization problem. To view a function template, at the MATLAB
command line, enter:

edit mpcCustomSolver.txt

Your custom QP solver function declaration must match the following:

function [x,status] = mpcCustomSolver(H,f,A,b,x0)

where

• H is a Hessian matrix, specified as an n-by-n symmetric positive definite matrix,
where n is the number of optimization variables.

• f is the multiplier of objective function linear term, specified as a column vector of
length n.

• A is a matrix of linear inequality constraint coefficients, specified as an m-by-n
matrix, where m is the number of constraints.

• b is the right-hand side of inequality constraints, specified as a column vector of
length m.

• x0 is an initial guess for the solution, specified as a column vector of length n.
• x is the optimal solution, returned as a column vector of length n.
• status is a solution validity indicator, returned as an integer according to the

following:

Value Description

> 0 x is optimal. status represents the number of iterations performed during
optimization.

0 The maximum number of iterations was reached. The solution, x, may be
suboptimal or infeasible.

-1 The problem appears to be infeasible, that is, the constraint Ax b≥ cannot
be satisfied.

-2 An unrecoverable numerical error occurred.

For more information, see “Simulate MPC Controller with a Custom QP Solver” on page
4-155.

 QP Solver

2-41

Note: Code generation is not supported when using a custom QP solver.

References

[1] Schmid, C. and L.T. Biegler, “Quadratic programming methods for reduced Hessian
SQP,” Computers & Chemical Engineering, Vol. 18, Number 9, 1994, pp. 817–832.

See Also
mpc | mpcmove | mpcqpsolver

More About
• “Optimization Problem” on page 2-2
• “Simulate MPC Controller with a Custom QP Solver” on page 4-155

2 Model Predictive Control Problem Setup

2-42

Controller State Estimation

In this section...

“Controller State Variables” on page 2-42
“State Observer” on page 2-43
“State Estimation” on page 2-44
“Built-in Steady-State Kalman Gains Calculation” on page 2-46
“Output Variable Prediction” on page 2-47

Controller State Variables

As the controller operates, it uses its current state, xc, as the basis for predictions. By
definition, the state vector is the following:

x k x k x k x k x kc
T

p
T

id
T

od
T

n
T() = È

Î
˘
˚

() () () () .

Here,

• xc is the controller state, comprising nxp + nxid + nxod + nxn state variables.
• xp is the plant model state vector, of length nxp.
• xid is the input disturbance model state vector, of length nxid.
• xod is the output disturbance model state vector, of length nxod.
• xn is the measurement noise model state vector, of length nxn.

Thus, the variables comprising xc represent the models appearing in the following
diagram of the MPC system.

 Controller State Estimation

2-43

Some of the state vectors may be empty. If not, they appear in the sequence defined
within each model.

By default, the controller updates its state automatically using the latest plant
measurements. See “State Estimation” on page 2-44 for details. Alternatively, the
custom state estimation feature allows you to update the controller state using an
external procedure, and then supply these values to the controller. See “Custom State
Estimation” on page 2-25 for details.

State Observer

Combination of the models shown in the diagram yields the state observer:

x k Ax k Bu k

y k Cx k Du k

c c o

c o

+() = () + ()

() = () + ()

1

.

MPC controller uses the state observer in the following ways:

• To estimate values of unmeasured states needed as the basis for predictions (see
“State Estimation” on page 2-44).

2 Model Predictive Control Problem Setup

2-44

• To predict how the controller’s proposed manipulated variable (MV) adjustments will
affect future plant output values (see “Output Variable Prediction” on page 2-47).

The observer’s input signals are the dimensionless plant manipulated and measured
disturbance inputs, and the white noise inputs to the disturbance and noise models:

u k u k v k w k w k w ko
T T T

id
T

od
T

n
T() = () () () () ()È

Î
˘
˚
.

The observer’s outputs are the ny dimensionless plant outputs.

In terms of the parameters defining the four models shown in the diagram, the observer’s
parameters are:

A

A B C

A

A

A

B

B B B Dp pd id

id

od

n

pu pv pd id

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

0 0

0 0 0

0 0 0

0 0 0

,

00 0

0 0 0 0

0 0 0 0

0 0 0 0

0

B

B

B

C C D C C
C

id

od

n

p pd id od
n

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
È

Î
Í

˘

˚
˙̇

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙, .

,

D D D D D
D

pv pd id od
n

0
0

Here, the plant and output disturbance models are resequenced so that the measured
outputs precede the unmeasured outputs.

State Estimation

In general, the controller states are unmeasured and must be estimated. By default, the
controller uses a steady state Kalman filter that derives from the state observer. (See
“State Observer” on page 2-43.)

At the beginning of the kth control interval, the controller state is estimated with the
following steps:

1 Obtain the following data:

• xc(k|k–1) — Controller state estimate from previous control interval, k–1
• uact(k–1) — Manipulated variable (MV) actually used in the plant from k–1 to k

(assumed constant)

 Controller State Estimation

2-45

• uopt(k–1) — Optimal MV recommended by MPC and assumed to be used in the
plant from k–1 to k

• v(k) — Current measured disturbances
• ym(k) — Current measured plant outputs
• Bu, Bv — Columns of observer parameter B corresponding to u(k) and v(k) inputs
• Cm — Rows of observer parameter C corresponding to measured plant outputs
• Dmv — Rows and columns of observer parameter D corresponding to measured

plant outputs and measured disturbance inputs
• L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in
calculations.

2 Revise xc(k|k–1) when uact(k–1) and uopt(k–1) are different:

x k k x k k B u k u kc
rev

c u
act opt| |-() = -() + -() - -()È

Î
˘
˚

1 1 1 1 .

3 Compute the innovation:

e k y k C x k k D v km m c
rev

mv() = () - -() + ()È
Î

˘
˚

| 1 .

4 Update the controller state estimate to account for the latest measurements.

x k k x k k Me kc c
rev| |() = -() + ()1 .

Then, the software uses the current state estimate xc(k|k) to solve the quadratic
program at interval k. The solution is uopt(k), the MPC-recommended manipulated-
variable value to be used between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the
unknown inputs, wid(k), wod(k), and wn(k) assume their mean value (zero) between
times k and k+1. The software predicts the impact of the known inputs and the
innovation as follows:

x k k Ax k k B u k B v k Le kc c
rev

u
opt

v+() = -() + () + () + ()1 1| | .

2 Model Predictive Control Problem Setup

2-46

Built-in Steady-State Kalman Gains Calculation

Model Predictive Control Toolbox software uses the kalman command to calculate
Kalman estimator gains L and M. The following assumptions apply:

• State observer parameters A, B, C, D are time-invariant.
• Controller states, xc, are detectable. (If not, or if the observer is numerically close to

undetectability, the Kalman gain calculation fails, generating an error message.)
• Stochastic inputs wid(k), wod(k), and wn(k) are independent white noise, each with zero

mean and identity covariance.
• Additional white noise wu(k) and wv(k) with the same characteristics adds to the

dimensionless u(k) and v(k) inputs respectively. This improves estimator performance
in certain cases, such as when the plant model is open-loop unstable.

Without loss of generality, set the u(k) and v(k) inputs to zero. The effect of the stochastic
inputs on the controller states and measured plant outputs is:

x k Ax k Bw k

y k C x k D w k

c c

m m c m

+() = () + ()

() = () + ()

1

.

Here,

w k w k w k w k w k w k
T

u
T

v
T

id
T

od
T

n
T() = () () () () ()È

Î
˘
˚
.

Inputs to the kalman command are the state observer parameters A, Cm, and the
following covariance matrices:

Q E Bww B BB

R E D ww D D D

N E Bww D BD

T T T

m
T

m
T

m m
T

T
m
T

m
T

= { } =

= { } =

= { } = .

Here, E{...} denotes the expectation.

 Controller State Estimation

2-47

Output Variable Prediction

Model Predictive Control requires prediction of noise-free future plant outputs used in
optimization. This is a key application of the state observer (see “State Observer” on page
2-43).

In control interval k, the required data are as follows:

• p — Prediction horizon (number of control intervals, which is greater than or equal to
1)

• xc(k|k) — Controller state estimates (see “State Estimation” on page 2-44)
• v(k) — Current measured disturbance inputs (MDs)
• v(k+i|k) — Projected future MDs, where i=1:p–1. If you are not using MD previewing,

then v(k+i|k) = v(k).
• A, Bu, Bv, C, Dv — State observer constants, where Bu, Bv, and Dv denote columns of

the B and D matrices corresponding to inputs u and v. Du is a zero matrix because of
no direct feedthrough

Predictions assume that unknown white noise inputs are zero (their expectation).
Also, the predicted plant outputs are to be noise-free. Thus, all terms involving
the measurement noise states disappear from the state observer equations. This is
equivalent to zeroing the last nxn elements of xc(k|k).

Given the above data and simplifications, for the first step the state observer predicts:

x k k Ax k k B u k k B v kc c u v+() = () + () + ()1| | | .

Continuing for successive steps, i = 2:p, the state observer predicts:

x k i k Ax k i k B u k i k B v k i kc c u v+() = + -() + + -() + + -()| | | |1 1 1 .

At any step, i = 1:p, the predicted noise-free plant outputs are:

y k i k Cx k i k D v k i kc v+() = +() + +()| | | .

All of these equations employ dimensionless plant input and output variables. See
“Specifying Scale Factors” on page 1-2. The equations also assume zero offsets. Inclusion
of nonzero offsets is straightforward.

2 Model Predictive Control Problem Setup

2-48

For faster computations, the MPC controller uses an alternative form of the above
equations in which constant terms are computed and stored during controller
initialization. See “QP Matrices” on page 2-8.

More About
• “MPC Modeling”
• “Optimization Problem” on page 2-2

3

Model Predictive Control Simulink
Library

• “MPC Library” on page 3-2
• “Relationship of Multiple MPC Controllers to MPC Controller Block” on page 3-3
• “Generate Code and Deploy Controller to Real-Time Targets” on page 3-5

3 Model Predictive Control Simulink Library

3-2

MPC Library

The MPC Simulink Library provides two blocks you can use to implement MPC control in
Simulink, MPC Controller, and Multiple MPC Controllers.

Access the library using the Simulink Library Browser or by typing mpclib at the
command prompt. The library contains the following blocks:

MPC Simulink Library

For more information on each block, see their respective block reference pages:

• MPC Controller

• Adaptive MPC Controller

• Explicit MPC Controller

• Multiple MPC Controllers

Once you have access to the library, you can add one of its blocks to your Simulink model
by clicking-and-dragging or copying-and-pasting.

 Relationship of Multiple MPC Controllers to MPC Controller Block

3-3

Relationship of Multiple MPC Controllers to MPC
Controller Block

The key difference between the Multiple MPC Controllers and the MPC
Controller blocks is the way in which you designate the controllers to be used.

Listing the controllers

You must provide an ordered list containing N names, where N is the number of
controllers and each name designates a valid MPC object in your base workspace. Each
named controller must use the identical set of plant signals (for example, the same
measured outputs and manipulated variables). See the Multiple MPC Controllers
reference for more information on creating lists.

Designing the controllers

Use your knowledge of the process to identify distinct operating regions and design a
controller for each. One convenient approach is to use the Simulink Control Design™
software to calculate each nominal operating point (typically a steady-state condition).
Then, obtain a linear prediction model at this condition. To learn more, see the Simulink
Control Design documentation. You must have a Simulink Control Design license to use
this approach.

After the prediction models have been defined for each operating region, design each
corresponding MPC Controller and give it a unique name in your base workspace.

Defining controller switching

Next, define the switching mechanism that will select among the controllers in real time.
Add this mechanism to your Simulink model. For example, you could use one or more
selected plant measurements to determine when each controller becomes active.

Your mechanism must define a scalar switching signal in the range 1 to N, where N is
the number of controllers in your list. Connect this signal to the block’s switch inport.
Set it to 1 when you want the first controller in your list to become active, to 2 when the
second is to become active, and so on.

3 Model Predictive Control Simulink Library

3-4

Note: The Multiple MPC Controllers block automatically rounds the switching
signal to the nearest integer. If the signal is outside the range 1 to N, none of the
controllers activate and the block output is zero.

Improving prediction accuracy

During operation, all inactive controllers receive the current manipulated variable
and measured output signals so they can update their state estimates. These updates
minimize bumps during controller transitions. See “Bumpless Transfer Between Manual
and Automatic Operations” on page 4-50 for more information. It is good practice to
enable the Externally supplied MV signal option and feedback the actual manipulated
variables measured in the plant to the ext.mv inport. This signal is provided to all the
controllers in the block’s list.

 Generate Code and Deploy Controller to Real-Time Targets

3-5

Generate Code and Deploy Controller to Real-Time Targets

Model Predictive Control Toolbox provides code generation functionality for controllers
designed in Simulink and MATLAB.

Code Generation in Simulink

After designing a controller in Simulink software using the MPC Controller block, you
can generate code and deploy it for real-time control. You can deploy the controller to all
targets supported by the following products:

• Simulink Coder™
• Embedded Coder®

• Simulink PLC Coder™
• Simulink Real-Time™

The sampling rate that a controller can achieve in real-time environment is system-
dependent. For example, for a typical small MIMO control application running on
Simulink Real-Time, the sampling rate can go as low as 1–10 ms. To determine the
sampling rate, first test a less aggressive controller whose sampling rate produces
acceptable performance on the target. Next, increase the sampling rate and monitor the
execution time used by the controller. You can further decrease the sampling rate as long
as the optimization safely completes within each sampling period under the normal plant
operations.

For more information, see “Simulation and Code Generation Using Simulink Coder” on
page 4-94 and “Simulation and Structured Text Generation Using PLC Coder” on
page 4-104.

Note: The MPC Controller block is implemented using the MATLAB Function block.
To see the structure, right-click the block and select Mask > Look Under Mask. Open
the MPC subsystem underneath.

Code Generation in MATLAB

After designing an MPC controller in MATLAB, you can generate C code using MATLAB
Coder and deploy it for real-time control.

3 Model Predictive Control Simulink Library

3-6

To generate code for computing optimal MPC control moves:

1 Generate data structures from an MPC or Explicit MPC controller using
getCodeGenerationData.

2 To verify that your controller produces the expected closed-loop results, simulate it
using mpcmoveCodeGeneration in place of mpcmove.

3 Generate code for mpcmoveCodeGeneration using codegen. This step requires
MATLAB Coder software.

For more information, see “Generate Code To Compute Optimal MPC Moves in
MATLAB” on page 4-108.

See Also
MPC Controller | mpcmoveCodeGeneration | Multiple MPC Controllers |
review

Related Examples
• “Simulation and Code Generation Using Simulink Coder” on page 4-94
• “Simulation and Structured Text Generation Using PLC Coder” on page 4-104
• “Generate Code To Compute Optimal MPC Moves in MATLAB” on page 4-108

4

Case-Study Examples

• “Design MPC Controller for Position Servomechanism” on page 4-2
• “Design MPC Controller for Paper Machine Process” on page 4-24
• “Bumpless Transfer Between Manual and Automatic Operations” on page 4-50
• “Switching Controller Online and Offline with Bumpless Transfer” on page 4-58
• “Coordinate Multiple Controllers at Different Operating Points” on page 4-64
• “Use Custom Constraints in Blending Process” on page 4-72
• “Providing LQR Performance Using Terminal Penalty” on page 4-83
• “Real-Time Control with OPC Toolbox” on page 4-89
• “Simulation and Code Generation Using Simulink Coder” on page 4-94
• “Simulation and Structured Text Generation Using PLC Coder” on page 4-104
• “Generate Code To Compute Optimal MPC Moves in MATLAB” on page 4-108
• “Setting Targets for Manipulated Variables” on page 4-116
• “Specifying Alternative Cost Function with Off-Diagonal Weight Matrices” on page

4-120
• “Review Model Predictive Controller for Stability and Robustness Issues” on page

4-125
• “Control of an Inverted Pendulum on a Cart” on page 4-144
• “Simulate MPC Controller with a Custom QP Solver” on page 4-155

4 Case-Study Examples

4-2

Design MPC Controller for Position Servomechanism

This example shows how to design a model predictive controller for a position
servomechanism using the MPC Designer app.

System Model

A position servomechanism consists of a DC motor, gearbox, elastic shaft, and load.

The differential equations representing this system are

&

&

w q
q
r

b
w

w
w b w

L
T

L
L

M L

L
L

M
M

M

M M M M

M

k

J J

k

J

V k

R J

k

= - -Ê

Ë
Á

ˆ

¯
˜ -

=
-Ê

Ë
Á

ˆ
¯
˜ - + TT

M
L

M

Jr
q

q
r

-Ê

Ë
Á

ˆ

¯
˜

where,

• V is the applied voltage.
• T is the torque acting on the load.
•

w q
L L

= & is the load angular velocity.

 Design MPC Controller for Position Servomechanism

4-3

•
w q

M M
= & is the motor shaft angular velocity.

The remaining terms are constant parameters.

Constant Parameters for Servomechanism Model

Symbol Value (SI Units) Definition

kT 1280.2 Torsional rigidity
kM 10 Motor constant
JM 0.5 Motor inertia
JL 50JM Load inertia
ρ 20 Gear ratio
βM 0.1 Motor viscous friction coefficient
βL 25 Load viscous friction coefficient
R 20 Armature resistance

If you define the state variables as

xp L L M M
T

= []q w q w ,

then you can model the servomechanism as an LTI state-space system.

&x

k

J J

k

J

k

J

k

J

k

R

J

p

T

L

L

L

T

L

T

M

T

M

M
M

M

=

- -

- -
+

È

Î

Í
Í
Í
Í
Í

0 1 0 0

0

0 0 0 1

0
2

2

b
r

r r

b
ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

= []

=

x

k

RJ

V

x

T k

p

M

M

L p

0

0

0

1 0 0 0q

TT
T

p

k
x0 0-

È

Î
Í

˘

˚
˙r

4 Case-Study Examples

4-4

The controller must set the angular position of the load, θL, at a desired value by
adjusting the applied voltage, V.

However, since the elastic shaft has a finite shear strength, the torque, T, must stay
within the range |T| ≤ 78.5 Nm. Also, the voltage source physically limits the applied
voltage to the range |V| ≤ 220 V.

Construct Plant Model

Specify the model constants.

Kt = 1280.2; % Torsional rigidity

Km = 10; % Motor constant

Jm = 0.5; % Motor inertia

Jl = 50*Jm; % Load inertia

N = 20; % Gear ratio

Bm = 0.1; % Rotor viscous friction

Bl = 25; % Load viscous friction

R = 20; % Armature resistance

Define the state-space matrices derived from the model equations.

A = [0 1 0 0;

 -Kt/Jl -Bl/Jl Kt/(N*Jl) 0;

 0 0 0 1;

 Kt/(Jm*N) 0 -Kt/(Jm*N^2) -(Bm+Km^2/R)/Jm];

B = [0; 0; 0; Km/(R*Jm)];

C = [1 0 0 0;

 Kt 0 -Kt/N 0];

D = [0; 0];

Create a state-space model.

plant = ss(A,B,C,D);

Open MPC Designer App

mpcDesigner

Import Plant and Define Signal Configuration

In the MPC Designer app, in the MPC Designer tab, select MPC Structure.

In the Define MPC Structure By Importing dialog box, select the plant plant model, and
assign the plant I/O channels to the following signal types:

 Design MPC Controller for Position Servomechanism

4-5

• Manipulated variable — Voltage, V
• Measured output — Load angular position, θL

• Unmeasured output — Torque, T

4 Case-Study Examples

4-6

 Design MPC Controller for Position Servomechanism

4-7

Click Define and Import.

The MPC Designer app imports the specified plant to the Data Browser. The following
are also added to the Data Browser:

• mpc1 — Default MPC controller created using plant as its internal model.
• scenario1 — Default simulation scenario. The results of this simulation are

displayed in the Input Response and Output Response plots.

Define Input and Output Channel Attributes

On the MPC Designer tab, in the Structure section, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, for each input and output
channel:

• Specify a meaningful Name and Unit.
• Keep the Nominal Value at its default value of 0.
• Specify a Scale Factor for normalizing the signal. Select a value that approximates

the predicted operating range of the signal:

Channel Name Minimum Value Maximum Value Scale Factor

Voltage –220 V 220 V 440

Theta –π radians π radians 6.28

Torque –78.5 Nm 78.5 Nm 157

4 Case-Study Examples

4-8

Click OK to update the channel attributes and close the dialog box.

Modify Scenario To Simulate Angular Position Step Response

In the Scenario section, Edit Scenario drop-down list, select scenario1 to modify the
default simulation scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 10 seconds.

In the Reference Signals table, keep the default configuration for the first channel.
These settings create a Step change of 1 radian in the angular position setpoint at a
Time of 1 second.

For the second output, in the Signal drop-down list, select Constant to keep the torque
setpoint at its nominal value.

 Design MPC Controller for Position Servomechanism

4-9

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.

4 Case-Study Examples

4-10

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, specify a Sample time of 0.1 seconds.

For the specified sample time, Ts, and a desired response time of Tr = 2 seconds, select a
prediction horizon, p, such that:

T pTr sª .

Therefore, specify a Prediction horizon of 20.

Specify a Control horizon of 5.

 Design MPC Controller for Position Servomechanism

4-11

As you update the sample time and horizon values, the Input Response and Output
Response plots update automatically. Both the input voltage and torque values exceed
the constraints defined in the system model specifications.

Specify Constraints

In the Design section, select Constraints.

In the Constraints dialog box, in the Input Constraints section, specify the Min and
Max voltage values for the manipulated variable (MV).

In the Output Constraints section, specify Min and Max torque values for the
unmeasured output (UO).

4 Case-Study Examples

4-12

There are no additional constraints, that is the other constraints remain at their default
maximum and minimum values, —Inf and Inf respectively

Click OK.

 Design MPC Controller for Position Servomechanism

4-13

The response plots update to reflect the new constraints. In the Input Response plot,
there are undesirable large changes in the input voltage.

Specify Tuning Weights

In the Design section, select Weights.

In the Weights dialog box, in the Input Weights table, increase the manipulated
variable Rate Weight.

4 Case-Study Examples

4-14

The tuning Weight for the manipulated variable (MV) is 0. This weight indicates that
the controller can allow the input voltage to vary within its constrained range. The
increased Rate Weight limits the size of manipulated variable changes.

Since the control objective is for the angular position of the load to track its setpoint, the
tuning Weight on the measured output is 1. There is no setpoint for the applied torque,
so the controller can allow the second output to vary within its constraints. Therefore, the
Weight on the unmeasured output (UO) is 0, which enables the controller to ignore the
torque setpoint.

Click OK.

 Design MPC Controller for Position Servomechanism

4-15

The response plots update to reflect the increased rate weight. The Input Response is
smoother with smaller voltage changes.

Examine Output Response

In the Output Response plot, right-click the Theta plot area, and select
Characteristics > Peak Response.

4 Case-Study Examples

4-16

The peak output response occurs at time of 3 seconds with a maximum overshoot of 3%.
Since the reference signal step change is at 1 second, the controller has a peak time of 2
seconds.

Improve Controller Response Time

Click and drag the Closed-Loop Performance slider to the right to produce a more
Aggressive response. The further you drag the slider to the right, the faster the

 Design MPC Controller for Position Servomechanism

4-17

controller responds. Select a slider position such that the peak response occurs at 2.7
seconds.

The final controller peak time is 1.7 seconds. Reducing the response time further results
in overly-aggressive input voltage changes.

Generate and Run MATLAB Script

In the Analysis section, click the Export Controller arrow .

Under Export Controller, click Generate Script.

In the Generate MATLAB Script dialog box, check the box next to scenario1.

4 Case-Study Examples

4-18

Click Generate Script.

The app exports a copy of the plant model, plant_C, to the MATLAB workspace, along
with simulation input and reference signals.

Additionally, the app generates the following code in the MATLAB Editor.

%% create MPC controller object with sample time

mpc1 = mpc(plant_C, 0.1);

%% specify prediction horizon

mpc1.PredictionHorizon = 20;

%% specify control horizon

mpc1.ControlHorizon = 5;

%% specify nominal values for inputs and outputs

mpc1.Model.Nominal.U = 0;

mpc1.Model.Nominal.Y = [0;0];

%% specify scale factors for inputs and outputs

mpc1.MV(1).ScaleFactor = 440;

mpc1.OV(1).ScaleFactor = 6.28;

mpc1.OV(2).ScaleFactor = 157;

%% specify constraints for MV and MV Rate

mpc1.MV(1).Min = -220;

mpc1.MV(1).Max = 220;

%% specify constraints for OV

mpc1.OV(2).Min = -78.5;

mpc1.OV(2).Max = 78.5;

%% specify overall adjustment factor applied to weights

beta = 1.2712;

%% specify weights

mpc1.Weights.MV = 0*beta;

mpc1.Weights.MVRate = 0.4/beta;

mpc1.Weights.OV = [1 0]*beta;

mpc1.Weights.ECR = 100000;

%% specify simulation options

options = mpcsimopt();

options.RefLookAhead = 'off';

options.MDLookAhead = 'off';

options.Constraints = 'on';

options.OpenLoop = 'off';

%% run simulation

sim(mpc1, 101, mpc1_RefSignal, mpc1_MDSignal, options);

In the MATLAB Window, in the Editor tab, select Save.

Complete the Save dialog box and then click Save.

 Design MPC Controller for Position Servomechanism

4-19

In the Editor tab, click Run.

4 Case-Study Examples

4-20

The script creates the controller, mpc1, and runs the simulation scenario. The input and
output responses match the simulation results from the app.

Validate Controller Performance In Simulink

Open the servomechanism Simulink model.

open_system('mpc_motor');

 Design MPC Controller for Position Servomechanism

4-21

This model uses an MPC Controller block to control a servomechanism plant. The
Servomechanism Model block is already configured to use the plant model from the
MATLAB workspace.

The Angle reference source block creates a sinusoidal reference signal with a
frequency of 0.4 rad/sec and an amplitude of π.

Double-click the MPC Controller block.

In the MPC Controller Block Parameters dialog box, specify an MPC Controller from
the MATLAB workspace. Use the mpc1 controller created using the generated script.

4 Case-Study Examples

4-22

Click OK.

At the MATLAB command line, specify a torque magnitude constraint variable.

tau = 78.5;

The model uses this value to plot the constraint limits on the torque output scope.

In the Simulink model window, click Run to simulate the model.

 Design MPC Controller for Position Servomechanism

4-23

In the Angle scope, the output response, yellow, tracks the angular position setpoint,
blue, closely.

See Also
mpc | MPC Controller | MPC Designer

Related Examples
• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

4 Case-Study Examples

4-24

Design MPC Controller for Paper Machine Process

This example shows how to design a model predictive controller for a nonlinear paper
machine process using the MPC Designer app.

System Model

Ying et al. studied the control of consistency (percentage of pulp fibers in aqueous
suspension) and liquid level in a paper machine headbox.

The process is nonlinear and has three outputs, two manipulated inputs, and two
disturbance inputs, one of which is measured for feedforward control.

The process model is a set of ordinary differential equations (ODEs) in bilinear form. The
states are

x H H N N
T

= []1 2 1 2

• H1 — Feed tank liquid level
• H2 — Headbox liquid level
• N1 — Feed tank consistency
• N2 — Headbox consistency

The primary control objective is to hold H2 and N2 at their setpoints by adjusting the
manipulated variables:

• Gp — Flow rate of stock entering the feed tank
• Gw — Flow rate of recycled white water

The consistency of stock entering the feed tank, Np, is a measured disturbance, and the
white water consistency, Nw, is an unmeasured disturbance.

 Design MPC Controller for Paper Machine Process

4-25

All signals are normalized with zero nominal steady-state values and comparable
numerical ranges. The process is open-loop stable.

The measured outputs are H2, N1, and N2.

The Simulink S-function, mpc_pmmodel implements the nonlinear model equations. To
view this S-function, enter the following.

edit mpc_pmmodel

Construct Plant Model

To design a controller for a nonlinear plant using MPC Designer, you must first obtain
a linear model of the plant. The paper machine headbox model can be linearized
analytically.

At the MATLAB command line, enter the state-space matrices for the linearized model.

A = [-1.9300 0 0 0

 0.3940 -0.4260 0 0

 0 0 -0.6300 0

 0.8200 -0.7840 0.4130 -0.4260];

B = [1.2740 1.2740 0 0

 0 0 0 0

 1.3400 -0.6500 0.2030 0.4060

 0 0 0 0];

C = [0 1.0000 0 0

 0 0 1.0000 0

 0 0 0 1.0000];

D = zeros(3,4);

Create a continuous-time LTI state-space model.

PaperMach = ss(A,B,C,D);

Specify the names of the input and output channels of the model.

PaperMach.InputName = {'G_p','G_w','N_p','N_w'};

PaperMach.OutputName = {'H_2','N_1','N_2'};

Specify the model time units.

PaperMach.TimeUnit = 'minutes';

Plot Linear Model Step Response

Examine the open-loop response of the plant.

4 Case-Study Examples

4-26

step(PaperMach);

The step response shows that:

• Both manipulated variables, Gp and Gw, affect all three outputs.
• The manipulated variables have nearly identical effects on H2.
• The response from Gw to N2 is an inverse response.

These features make it difficult to achieve accurate, independent control of H2 and N2.

 Design MPC Controller for Paper Machine Process

4-27

Open MPC Designer App

mpcDesigner

Import Plant Model and Define Signal Configuration

In the MPC Designer app, on the MPC Designer tab, in the Structure section, click
MPC Structure.

In the Define MPC Structure By Importing dialog box, select the PaperMach plant model
and assign the plant I/O channels to the following signal types:

• Manipulated variables — Gp and Gw

• Measured disturbance — Np

• Unmeasured disturbance — Nw

• Measured outputs — H2, N2, and H2

4 Case-Study Examples

4-28

 Design MPC Controller for Paper Machine Process

4-29

Tip To find the correct channel indices, click the PaperMach model Name to view
additional model details.

Click Define and Import.

The app imports the plant to the Data Browser and creates a default MPC controller
using the imported plant.

Define Input and Output Channel Attributes

In the Structure section, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Unit column, define
the units for each channel. Since all the signals are normalized with zero nominal steady-
state values, keep the Nominal Value and Scale Factor for each channel at their
default values.

4 Case-Study Examples

4-30

Click OK to update the channel attributes and close the dialog box.

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, keep the Sample time, Prediction
Horizon, and Control Horizon at their default values.

Specify Manipulated Variable Constraints

In the Design section, click Constraints.

In the Constraints dialog box, in the Input Constraints section, specify value
constraints, Min and Max, for both manipulated variables.

Click OK.

Specify Initial Tuning Weights

In the Design section, click Weights.

In the Weights dialog box, in the Input Weights section, increase the Rate Weight to
0.4 for both manipulated variables.

In the Output Weights section, specify a Weight of 0 for the second output, N1, and a
Weight of 1 for the other outputs.

 Design MPC Controller for Paper Machine Process

4-31

Increasing the rate weight for manipulated variables prevents overly-aggressive control
actions resulting in a more conservative controller response.

Since there are two manipulated variables, the controller cannot control all three outputs
completely. A weight of zero indicates that there is no setpoint for N1. As a result, the
controller can hold H2 and N2 at their respective setpoints.

Simulate H2 Setpoint Step Response

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for the first
output. Keep the step Size at 1 and specify a step Time of 0.

4 Case-Study Examples

4-32

In the Signal drop-down lists for the other output reference signals, select Constant to
hold the values at their respective nominal values. The controller ignores the setpoint for
the second output since the corresponding tuning weight is zero.

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.

 Design MPC Controller for Paper Machine Process

4-33

The initial design uses a conservative control effort to produce a robust controller. The
response time for output H2 is about 7 minutes. To reduce this response time, you can
decrease the sample time, reduce the manipulated variable rate weights, or reduce the
manipulated variable rate constraints.

Since the tuning weight for output N1 is zero, its output response shows a steady-state
error of about –0.25.

Adjust Weights to Emphasize Feed Tank Consistency Control

On the Tuning tab, in the Design section, select Weights.

In the Weights dialog box, in the Output Weights section, specify a Weight of 0.2 for
the first output, H2.

4 Case-Study Examples

4-34

The controller places more emphasis on eliminating errors in feed tank consistency, N2,
which significantly decreases the peak absolute error. The trade-off is a longer response
time of about 17 minutes for the feed tank level, H2.

Test Controller Feedforward Response to Measured Disturbances

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New
Scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Measured Disturbances table, specify a step change in measured disturbance,
Np, with a Size of 1 and a step Time of 1. Keep all output setpoints constant at their
nominal values.

 Design MPC Controller for Paper Machine Process

4-35

Click OK to run the simulation and display the input and output response plots.

4 Case-Study Examples

4-36

As shown in the NewScenario: Output plot, both H2 and N2 deviate little from their
setpoints.

Experiment with Signal Previewing

In the Data Browser, in the Scenarios section, right-click NewScenario, and select
Edit.

In the Simulation Scenario dialog box, in the Simulation Settings section, check the
Preview measured disturbances option.

Click Apply.

 Design MPC Controller for Paper Machine Process

4-37

The manipulated variables begin changing before the measured disturbance occurs
because the controller uses the known future disturbance value when computing its
control action. The output disturbance values also begin changing before the disturbance
occurs, which reduces the magnitude of the output errors. However, there is no
significant improvement over the previous simulation result.

In the Simulation Scenario dialog box, clear the Preview measured disturbances
option.

Click OK.

4 Case-Study Examples

4-38

Rename Scenarios

With multiple scenarios, it is helpful to provide them with meaningful names. In the
Data Browser, in the Scenarios section, double-click each scenario to rename them as
shown:

Test Controller Feedback Response to Unmeasured Disturbances

In the Data Browser, in the Scenarios section, right-click Feedforward,and select
Copy.

Double-click the new scenario, and rename it Feedback.

Right-click the Feedback scenario, and select Edit.

In the Simulation Scenario dialog box, in the Measured Disturbances table, in the
Signal drop-down list, select Constant to remove the measured disturbance.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step to
simulate a sudden, sustained unmeasured input disturbance.

Set the step Size to 1 and the step Time to 1.

 Design MPC Controller for Paper Machine Process

4-39

Click OK to update the scenario settings, and run the simulation.

In the Data Browser, in the Scenarios section, right-click Feedback, and select Plot.

4 Case-Study Examples

4-40

The controlled outputs, H2 and N2, both exhibit relatively small deviations from their
setpoints. The settling time is longer than for the original servo response, which is
typical.

On the Tuning tab, in the Analysis section, click Review Design to check the
controller for potential run-time stability or numerical problems.

The review report opens in a new window.

 Design MPC Controller for Paper Machine Process

4-41

The review flags two warnings about the controller design. Click the warning names to
determine whether they indicate problems with the controller design.

The Closed-Loop Steady-State Gains warning indicates that the plant has more
controlled outputs than manipulated variables. This input/output imbalance means that
the controller cannot eliminate steady-state error for all of the outputs simultaneously.
To meet the control objective of tracking the setpoints of H2 and N2, you previously set
the output weight for N1 to zero. This setting causes the QP Hessian Matrix Validity
warning, which indicates that one of the output weights is zero.

Since the input/output imbalance is a known feature of the paper machine plant model,
and you intentionally set one of the output weights to zero to correct for the imbalance,
neither warning indicates an issue with the controller design.

Export Controller to MATLAB Workspace

On the MPC Designer tab, in the Result section, click Export Controller .

4 Case-Study Examples

4-42

In the Export Controller dialog box, check the box in the Select column.

In the Export As column, specify MPC1 as the controller name.

Click Export to save a copy of the controller to the MATLAB workspace.

Open Simulink Model

open_system('mpc_papermachine')

 Design MPC Controller for Paper Machine Process

4-43

TheMPC Controller block controls the nonlinear paper machine plant model, which is
defined using the S-Function mpc_pmmodel.

The model is configured to simulate a sustained unmeasured disturbance of size 1.

Configure MPC Controller Block

Double-click the MPC Controller block.

4 Case-Study Examples

4-44

 Design MPC Controller for Paper Machine Process

4-45

The MPC Controller block is already configured to use the MPC1 controller that was
previously exported to the MATLAB workspace.

Also, the Measured disturbance option is selected to add the md inport to the controller
block.

Simulate the model

In the Outputs plot, the responses are almost identical to the responses from the
corresponding simulation in MPC Designer. The yellow curve is H2, the blue is N1, and
the red is N2.

4 Case-Study Examples

4-46

Similarly, in the MVs scope, the manipulated variable moves are almost identical to the
moves from corresponding simulation in MPC Designer. The yellow curve is Gp and the
blue is Gw.

These results show that there are no significant prediction errors due to the mismatch
between the linear prediction model of the controller and the nonlinear plant. Even
increasing the unmeasured disturbance magnitude by a factor of four produces similarly
shaped response curves. However, as the disturbance size increases further, the effects of
nonlinearities become more pronounced.

 Design MPC Controller for Paper Machine Process

4-47

Increase Unmeasured Disturbance Magnitude

In the Simulink model window, double-click the Unmeasured Disturbance block.

In the Unmeasured Disturbance properties dialog box, specify a Constant value of 6.5.

Click OK.

Simulate the model.

4 Case-Study Examples

4-48

The mismatch between the prediction model and the plant now produces output
responses with significant differences. Increasing the disturbance magnitude further
results in large setpoint deviations and saturated manipulated variables.

References

[1] Ying, Y., M. Rao, and Y. Sun “Bilinear control strategy for paper making process,”
Chemical Engineering Communications (1992), Vol. 111, pp. 13–28.

 Design MPC Controller for Paper Machine Process

4-49

See Also
MPC Controller | MPC Designer

Related Examples
• “Design Controller Using MPC Designer”

4 Case-Study Examples

4-50

Bumpless Transfer Between Manual and Automatic Operations

In this section...

“Open Simulink Model” on page 4-50
“Define Plant and MPC Controller” on page 4-51
“Configure MPC Block Settings” on page 4-52
“Examine Switching Between Manual and Automatic Operation” on page 4-53
“Turn off Manipulated Variable Feedback” on page 4-55

This example shows how to bumplessly transfer between manual and automatic
operations of a plant.

During startup of a manufacturing process, operators adjust key actuators manually
until the plant is near the desired operating point before switching to automatic control.
If not done correctly, the transfer can cause a bump, that is, large actuator movement.

In this example, you simulate a Simulink model that contains a single-input single-
output LTI plant and an MPC Controller block.

A model predictive controller monitors all known plant signals, even when it is not
in control of the actuators. This monitoring improves its state estimates and allows a
bumpless transfer to automatic operation.

Open Simulink Model

Open the Simulink model.

open_system('mpc_bumpless')

 Bumpless Transfer Between Manual and Automatic Operations

4-51

To simulate switching between manual and automatic operation, the Switching block
sends either 1 or 0 to control a switch. When it sends 0, the system is in automatic mode,
and the output from the MPC Controller block goes to the plant. Otherwise, the system
is in manual mode, and the signal from the Operator Commands block goes to the plant.

In both cases, the actual plant input feeds back to the controller ext.mv inport, unless
the plant input saturates at –1 or 1. The controller constantly monitors the plant output
and updates its estimate of the plant state, even when in manual operation.

This model also shows the optimization switching option. When the system switches to
manual operation, a nonzero signal enters the switch inport of the controller block. The
signal turns off the optimization calculations, which reduces computational effort.

Define Plant and MPC Controller

Create the plant model.

num = [1 1];

den = [1 3 2 0.5];

sys = tf(num,den);

The plant is a stable single-input single-output system as seen in its step response.

step(sys)

4 Case-Study Examples

4-52

Create an MPC controller.

Ts = 0.5; % sampling time (seconds)

p = 15; % prediction horizon

m = 2; % control horizon

MPC1 = mpc(sys,Ts,p,m);

MPC1.Weights.Output = 0.01;

MPC1.MV = struct('Min',-1,'Max',1);

Tstop = 250;

Configure MPC Block Settings

Open the Function Block Parameters: MPC Controller dialog box.

• Specify MPC1 in the MPC Controller box.
• Verify that the External Manipulated Variable (ext.mv) option in the General

tab is selected. This option adds the ext.mv inport to the block to enable the use of
external manipulated variables.

• Verify that the Use external signal to enable or disable optimization (switch)
option in the Others tab is selected. This option adds the switch inport to the
controller block to enable switching off the optimization calculations.

 Bumpless Transfer Between Manual and Automatic Operations

4-53

Click OK.

Examine Switching Between Manual and Automatic Operation

Click Run in the Simulink model window to simulate the model.

4 Case-Study Examples

4-54

 Bumpless Transfer Between Manual and Automatic Operations

4-55

For the first 90 time units, the Switching Signal is 0, which makes the system
operate in automatic mode. During this time, the controller smoothly drives the
controlled plant output from its initial value, 0, to the desired reference value, –0.5.

The controller state estimator has zero initial conditions as a default, which is
appropriate when this simulation begins. Thus, there is no bump at startup. In general,
start the system running in manual mode long enough for the controller to acquire an
accurate state estimate before switching to automatic mode.

At time 90, the Switching Signal changes to 1. This change switches the system to
manual operation and sends the operator commands to the plant. Simultaneously, the
nonzero signal entering the switch inport of the controller turns off the optimization
calculations. While the optimization is turned off, the MPC Controller block passes the
current ext.mv signal to the Controller Output.

Once in manual mode, the operator commands set the manipulated variable to –0.5 for
10 time units, and then to 0. The Plant Output plot shows the open-loop response
between times 90 and 180 when the controller is deactivated.

At time 180, the system switches back to automatic mode. As a result, the plant output
returns to the reference value smoothly, and a similar smooth adjustment occurs in the
controller output.

Turn off Manipulated Variable Feedback

Delete the signals entering the ext.mv and switch inports of the controller block.

Delete the Unit Delay block and the signal line entering its inport.

Open the Function Block Parameters: MPC Controller dialog box.

Deselect the External Manipulated Variable (ext.mv) option in the General tab to
remove the ext.mv inport from the controller block.

Deselect the Use external signal to enable or disable optimization (switch) option
in the Others tab to remove the switch inport from the controller block.

Click OK. The Simulink model now resembles the following figure.

4 Case-Study Examples

4-56

Click Run to simulate the model.

 Bumpless Transfer Between Manual and Automatic Operations

4-57

The behavior is identical to the original case for the first 90 time units.

When the system switches to manual mode at time 90, the plant behavior is the same
as before. However, the controller tries to hold the plant at the setpoint. So, its output
increases and eventually saturates, as seen in Controller Output. Since the controller
assumes that this output is going to the plant, its state estimates become inaccurate.
Therefore, when the system switches back to automatic mode at time 180, there is a large
bump in the Plant Output.

Such a bump creates large actuator movements within the plant. By smoothly
transferring from manual to automatic operation, a model predictive controller
eliminates such undesired movements.

Related Examples
• “Switching Controller Online and Offline with Bumpless Transfer” on page 4-58

4 Case-Study Examples

4-58

Switching Controller Online and Offline with Bumpless Transfer
This example shows how to obtain bumpless transfer when switching model predictive
controller from manual to automatic operation or vice versa.

In particular, it shows how the EXT.MV input signal to the MPC block can be used to
keep the internal MPC state up to date when the operator or another controller is in
control.

Define Plant Model

The linear open-loop dynamic plant model is as follows:

num = [1 1];

den = [1 3 2 0.5];

sys = tf(num,den);

Design MPC Controller

Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.5; % Sampling time

p = 15; % Prediction horizon

m = 2; % Control horizon

mpcobj = mpc(sys,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

MV Constraints

Define constraints on the manipulated variable.

mpcobj.MV=struct('Min',-1,'Max',1);

Weights

Change the output weight.

mpcobj.Weights.Output=0.01;

Simulate Using Simulink®

To run this example, Simulink® is required.

 Switching Controller Online and Offline with Bumpless Transfer

4-59

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

mdl = 'mpc_bumpless';

open_system(mdl)

sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Case-Study Examples

4-60

 Switching Controller Online and Offline with Bumpless Transfer

4-61

Simulate without Using External MV Signal

Without using the external MV signal, MPC controller is no longer able to provide
bumpless transfer because the internal controller states are not estimated correctly.

delete_line(mdl,'Switch/1','Unit Delay/1');

delete_line(mdl,'Unit Delay/1','MPC Controller/3');

delete_block([mdl '/Unit Delay']);

delete_line(mdl,'Switching/1','MPC Controller/4');

set_param([mdl '/MPC Controller'],'mv_inport','off');

set_param([mdl '/MPC Controller'],'switch_inport','off');

set_param([mdl '/Yplots'],'Ymin','-1~-0.1')

set_param([mdl '/Yplots'],'Ymax','3~1.1')

4 Case-Study Examples

4-62

set_param([mdl '/MVplots'],'Ymin','-1.1~-5')

set_param([mdl '/MVplots'],'Ymax','1.1~10')

sim(mdl);

 Switching Controller Online and Offline with Bumpless Transfer

4-63

Now the transition from manual to automatic control is much less smooth. Note the large
"bump" between time = 180 and 200.

bdclose(mdl)

Related Examples
• “Bumpless Transfer Between Manual and Automatic Operations” on page 4-50

4 Case-Study Examples

4-64

Coordinate Multiple Controllers at Different Operating Points

Chemical reactors can exhibit strongly nonlinear behavior due to the exponential effect
of temperature on reaction rate. If the primary reaction is exothermic, an increase in
reaction rate causes an increase in reactor temperature. This positive feedback can lead
to open-loop unstable behavior.

Reactors operate in either a continuous or a batch mode. In batch mode, operating
conditions can change dramatically during a batch as the reactants disappear. Although
continuous reactors typically operate at steady state, they must often move to a new
steady state. In other words, both batch and continuous reactors need to operate safely
and efficiently over a range of conditions.

If the reactor behaves nonlinearly, a single linear controller might not be able to manage
such transitions. One approach is to develop linear models that cover the anticipated
operating range, design a controller based on each model, and then define a criterion by
which the control system switches from one such controller to another. Gain scheduling is
an established technique. The challenge is to move the reactor operating conditions from
an initial steady-state point to a much different condition. The transition passes through
a region in which the plant is open-loop unstable. This example illustrates an alternative
— coordination of multiple MPC controllers. The solution uses the Simulink Multiple
MPC Controller block to coordinate the use of three controllers, each of which has been
designed for a particular operating region.

The subject process is a constant-volume continuous stirred-tank reactor (CSTR). The
model consists of two nonlinear ordinary differential equations (see [1]). The model
states are the reactor temperature and the rate-limiting reactant concentration. For the
purposes of this example, both are assumed to be measured plant outputs.

There are three inputs:

• Concentration of the limiting reactant in the reactor feed stream, kmol/m3

• The reactor feed temperature, K
• The coolant temperature, K

The control system can adjust the coolant temperature in order to regulate the reactor
state and the rate of the exothermic main reaction. The other two inputs are independent
unmeasured disturbances.

 Coordinate Multiple Controllers at Different Operating Points

4-65

The Simulink diagram for this example appears below. The CSTR model is a masked
subsystem. The feed temperature and composition are constants. As discussed above, the
control system adjusts the coolant temperature (the Tc input on the CSTR block).

The two CSTR outputs are the reactor temperature and composition respectively. These
are being sent to a scope display and to the control system as feedback.

The reference signal (i.e. setpoint) is coming from variable CSTR_Setpoints, which is in
the base workspace. As there is only one manipulated variable (the coolant temperature)
the control objective is to force the reactor concentration to track a specified trajectory.
The concentration setpoint also goes to the Plant State scope for plotting. The control
system receives a setpoint for the reactor temperature too but the controller design
ignores it.

In that case why supply the temperature measurement to the controller? The main
reason is to improve state estimation. If this were not done, the control system would
have to infer the temperature value from the concentration measurement, which would
introduce an estimation error and degrade the model's predictive accuracy.

The rationale for the Switch 1 and Switch 2 blocks appears below.

The figure below shows the Multi MPC Controller mask. The block is coordinating
three controllers (MPC1, MPC2 and MPC3 in that sequence). It is also receiving the setpoint
signal from the workspace, and the Look ahead option is active. This allows the
controller to anticipate future setpoint values and usually improves setpoint tracking.

4 Case-Study Examples

4-66

In order to designate which one of the three controllers is active at each time instant, we
send the Multi MPC Controllers block a switching signal (connected to its switch
input port). If it is 1, MPC1 is active. If it is 2, MPC2 is active, and so on.

In the diagram, Switch 1 and Switch 2 perform the controller selection function as
follows:

• If the reactor concentration is 8 kmol/m3 or greater, Switch 1 sends the constant 1 to
its output. Otherwise it sends the constant 2.

• If the reactor concentration is 3 kmol/m3 or greater, Switch 2 passes through the
signal coming from Switch 1 (either 1 or 2). Otherwise is sends the constant 3.

 Coordinate Multiple Controllers at Different Operating Points

4-67

Thus, each controller handles a particular composition range. The simulation begins
with the reactor at an initial steady state of 311K and 8.57 kmol/m3. The feed

concentration is 10 kmol/m3 so this is a conversion of about 15%, which is low.
The control objective is to transition smoothly to 80% conversion with the reactor
concentration at 2 kmol/m3. The simulation will start with MPC1 active, transition to
MPC2, and end with MPC3.

We decide to design the controllers around linear models derived at the following three
reactor compositions (and the corresponding steady-state temperature): 8.5, 5.5, and 2
kmol/m3.

In practice, you would probably obtain the three models from data. This example
linearizes the nonlinear model at the above three conditions (for details see “Using
Simulink to Develop LTI Models” in the Getting Started Guide).

Note As shown later, we need to retain at the unmeasured plant inputs in the
model. This prevents us from using the Model Predictive Control Toolbox automatic
linearization feature. In the current toolbox, the automatic linearization feature can
linearize with respect to manipulated variable and measured disturbance inputs only.

The following code obtains the linear models and designs the three controllers

[sys, xp] = CSTR_INOUT([],[],[],'sizes');

up = [10 298.15 298.15]';

yp = xp;

Ts = 1;

Nc = 3;

Controllers = cell(1,3);

Concentrations = [8.5 5.5 2];

Y = yp;

for i = 1:Nc

 clear Model

 Y(2) = Concentrations(i);

 [X,U,Y,DX] = trim('CSTR_INOUT',xp(:),up(:),Y(:),[],[1,2]',2)

 [a,b,c,d] = linmod('CSTR_INOUT', X, U);

 Plant = ss(a,b,c,d);

 Plant.InputGroup.MV = 3;

 Plant.InputGroup.UD = [1,2];

 Model.Plant = Plant;

 Model.Nominal.U = [0; 0; up(3)];

4 Case-Study Examples

4-68

 Model.Nominal.X = xp;

 Model.Nominal.Y = yp;

 MPCobj = mpc(Model, Ts);

 MPCobj.Weight.OV = [0 1];

 D = ss(getindist(MPCobj));

 D.b = D.b*10;

 set(D,'InputName',[],'OutputName',[],'InputGroup',[], ...

 'OutputGroup',[])

 setindist(MPCobj, 'model', D)

 Controllers{i} = MPCobj;

end

MPC1 = Controllers{1};

MPC2 = Controllers{2};

MPC3 = Controllers{3}

The key points regarding the designs are as follows:

• All three controllers use the same nominal condition, the values of the plant inputs
and outputs at the initial steady-state. Exception: all unmeasured disturbance inputs
must have zero nominal values.

• Each controller employs a different prediction model. The model structure is the same
in each case (input and outputs are identical in number and type) but each model
represents a particular steady-state reactor composition.

• It turns out that the MPC2 plant model obtained at 5 kmol/m3 is open-loop unstable.
We must use a model structure that promotes a stable Kalman state estimator. If
we include the unmeasured disturbance inputs in the prediction model, the default
estimator assumes integrated white noise at each such input, which produces a stable
estimator in this case.

• The default estimator signal-to-noise settings are inappropriate, however. If you
use them and monitor the state estimates (not shown), the internally estimated
temperature and composition can be far from the measured values. To overcome
this, we increase the signal-to-noise ratio in each disturbance channel. See the use of
getindist and setindist above. The default signal to noise is being increased by a
factor of 10.

• We are using a zero weight on the measured temperature. See the above discussion of
control objectives for the rationale.

 Coordinate Multiple Controllers at Different Operating Points

4-69

The above plots show the simulation results. The Multi MPC Controller block uses the
three controllers sequentially as expected (see the switching signal). Tracking of the
concentration setpoint is excellent and the reactor temperature is also controlled well.

To achieve this, the control system starts by increasing the coolant temperature,
causing the reaction rate to increase. Once the reaction has achieved a high rate, it
generates substantial heat and the coolant temperature must decrease to keep the

4 Case-Study Examples

4-70

reactor temperature under control. As the reactor concentration depletes, the reaction
rate slows and the control system must again raise the coolant temperature, finally
settling at 305 K, about 7 K above the initial condition.

For comparison the plots below show the results for the same scenario if we force MPC3 to
be active for the entire simulation. The CSTR eventually stabilizes at the desired steady-
state but both the reactor temperature and composition exhibit large excursions away
from the desired conditions.

 Coordinate Multiple Controllers at Different Operating Points

4-71

References

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp Process Dynamics and Control, 2nd
Edition (2004), Wiley, pp. 34–36.

4 Case-Study Examples

4-72

Use Custom Constraints in Blending Process

This example shows how to design an MPC controller for a blending process using custom
input and output constraints.

Blending Process

A continuous blending process combines three feeds in a well-mixed container to produce
a blend having desired properties. The dimensionless governing equations are:

where

• is the mixture inventory (in the container).
• is the plow rate for the ith feed.
• is the rate at which the blend is being removed from inventory, that is the demand.
• is the concentration of constituent in feed .
• is the concentration of constituent in the blend.
• is time.

In this example, there are two important constituents, = 1 and 2.

The control objectives are targets for the two constituent concentrations in the blend,
and the mixture inventory. The challenge is that the demand, , and feed compositions,

, vary. The inventory, blend compositions, and demand are measured, but the feed
compositions are unmeasured.

At the nominal operating condition:

• Feed 1, , (mostly constituent 1) is 80% of the total inflow.
• Feed 2, , (mostly constituent 2) is 20%.
• Feed 3, , (pure constituent 1) is not used.

 Use Custom Constraints in Blending Process

4-73

The process design allows manipulation of the total feed entering the mixing chamber,
, and the individual rates of feeds 2 and 3. In other words, the rate of feed 1 is:

Each feed has limited availability:

The equations are normalized such that, at the nominal steady state, the mean residence
time in the mixing container is .

The constraint is imposed by an upstream process, and the constraints
 are imposed by physical limits.

Define Linear Plant Model

The blending process is mildly nonlinear, however you can derive a linear model at the
nominal steady state. This approach is quite accurate unless the (unmeasured) feed
compositions change. If the change is sufficiently large, the steady-state gains of the
nonlinear process change sign and the closed-loop system can become unstable.

Specify the number of feeds, ni, and the number of constituents, nc.

ni = 3;

nc = 2;

Specify the nominal flow rates for the three input streams and the output stream, or
demand. At the nominal operating condition, the output flow rate is equal to the sum of
the input flow rates.

Fin_nom = [1.6,0.4,0];

F_nom = sum(Fin_nom);

Define the nominal constituent compositions for the input feeds, where cin_nom(i,j)
represents the composition of constituent i in feed j.

cin_nom = [0.7 0.2 0.8;0.3 0.8 0];

Define the nominal constituent compositions in the output feed.

4 Case-Study Examples

4-74

cout_nom = cin_nom*Fin_nom'/F_nom;

Normalize the linear model such that the target demand is 1 and the product
composition is 1.

fin_nom = Fin_nom/F_nom;

gij = [cin_nom(1,:)/cout_nom(1); cin_nom(2,:)/cout_nom(2)];

Create a state-space model with feed flows F1, F2, and F3 as MVs:

A = [zeros(1,nc+1); zeros(nc,1) -eye(nc)];

Bu = [ones(1,ni); gij-1];

Change the MV definition to [FT, F2, F3] where F1 = FT - F2 - F3

Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];

Add the measured disturbance, blend demand, as the 4th model input.

Bv = [-1; zeros(nc,1)];

B = [Bu Bv];

Define all of the states as measurable. The states consist of the mixture inventory and
the constituent concentrations.

C = eye(nc+1);

Specify that there is no direct feed-through from the inputs to the outputs.

D = zeros(nc+1,ni+1);

Construct the linear plant model.

Model = ss(A,B,C,D);

Model.InputName = {'F_T','F_2','F_3','F'};

Model.InputGroup.MV = 1:3;

Model.InputGroup.MD = 4;

Model.OutputName = {'V','c_1','c_2'};

Create MPC Controller

Specify the sample time, prediction horizon, and control horizon.

Ts = 0.1;

p = 10;

 Use Custom Constraints in Blending Process

4-75

m = 3;

Create the controller.

mpcobj = mpc(Model,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

The outputs are the inventory, y(1), and the constituent concentrations, y(2) and y(3).
Specify nominal values of unity after normalization for all outputs.

mpcobj.Model.Nominal.Y = [1 1 1];

Specify the normalized nominal values the manipulated variables, u(1), u(2) and u(3),
and the measured disturbance, u(4).

mpcobj.Model.Nominal.U = [1 fin_nom(2) fin_nom(3) 1];

Specify output tuning weights. Larger weights are assigned to the first two outputs
because we want to pay more attention to controlling the inventory, and the composition
of the first constituent.

mpcobj.Weights.OV = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables.

umin = [0 0 0];

umax = [2 0.6 0.6];

for i = 1:3

 mpcobj.MV(i).Min = umin(i);

 mpcobj.MV(i).Max = umax(i);

 mpcobj.MV(i).RateMin = -0.1;

 mpcobj.MV(i).RateMax = 0.1;

end

The total feed rate and the rates of feed 2 and feed 3 have upper bounds. Feed 1 also has
an upper bound, determined by the upstream unit supplying it.

Specify Custom Constraints

Given the specified upper bounds on the feed 2 and 3 rates (0.6), it is possible that their
sum could be as much as 1.2. Since the nominal total feed rate is 1.0, the controller can

4 Case-Study Examples

4-76

request a physically impossible condition, where the sum of feeds 2 and 3 exceeds the
total feed rate, which implies a negative feed 1 rate.

The following constraint prevents the controller from requesting an unrealistic value.

Specify this constraint in the form .

E = [-1 1 1; 1 -1 -1];

g = [0;0.8];

Since no outputs are specified in the mixed constraints, set their coefficients to zero.

F = zeros(2,3);

Specify that both constraints are hard (ECR = 0).

v = zeros(2,1);

Specify zero coefficients for the measured disturbance.

h = zeros(2,1);

Set the custom constraints in the MPC controller.

setconstraint(mpcobj,E,F,g,v,h)

Open and Simulate Model in Simulink

sys = 'mpc_blendingprocess';

open_system(sys)

sim(sys)

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->Assuming output disturbance added to measured output channel #3 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Use Custom Constraints in Blending Process

4-77

4 Case-Study Examples

4-78

 Use Custom Constraints in Blending Process

4-79

4 Case-Study Examples

4-80

The MPC controller controls the blending process. The block labeled Blending
incorporates the previously described model equations and includes an unmeasured step
disturbance in the constituent 1 feed composition.

The Demand, , is modeled as a measured disturbance. The operator can vary the
demand value, and the resulting signal goes to both the process and the controller.

The model simulates the following scenario:

• At , the process is operating at steady state.
• At , the Total Demand decreases from to .
• At , there is a large step increase in the concentration of constituent 1 in feed 1,

from 1.17 to 2.17.

The controller maintains the inventory very close to its setpoint, but the severe
disturbance in the feed composition causes a prediction error and a large disturbance in
the blend composition, especially for constituent 1, c_1. However, the controller recovers
and drives the blend composition back to its setpoint.

Verify Effect of Custom Constraints

Plot the feed rate signals.

figure

plot(MVs.time,[MVs.signals(1).values(:,2), ...

 (MVs.signals(2).values + MVs.signals(3).values), ...

 (MVs.signals(1).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])

grid

legend('FT','F2+F3','F1')

 Use Custom Constraints in Blending Process

4-81

The total feed rate, FT, and the sum of feed rates F2 and F3 coincide for . If
the custom input constraints had not been included, the controller would have requested
an impossible negative feed 1 rate, F1, during this period.

bdclose(sys)

See Also
setconstraint

Related Examples
• MPC Control with Constraints on a Combination of Input and Output Signals

4 Case-Study Examples

4-82

• MPC Control of a Nonlinear Blending Process

More About
• “Constraints on Linear Combinations of Inputs and Outputs” on page 2-33

 Providing LQR Performance Using Terminal Penalty

4-83

Providing LQR Performance Using Terminal Penalty
This example, from Scokaert and Rawlings [1], shows how to make a finite-horizon Model
Predictive Controller equivalent to an infinite-horizon linear quadratic regulator (LQR).

The“Standard Cost Function” on page 2-2 is similar to that used in an LQR controller
with output weighting, as shown in the following equation:

J u y k i Qy k i u k i Ru k iT T

i

() () () () ()= + + + + - + -

=

•

Â 1 1

1

The LQR and MPC cost functions differ in the following ways:

• The LQR cost function forces y and u towards zero whereas the MPC cost function
forces y and u toward nonzero setpoints.

You can shift the MPC prediction model’s origin to eliminate this difference and
achieve zero setpoints at nominal condition.

• The LQR cost function uses an infinite prediction horizon in which the manipulated
variable changes at each sampling instant. In the standard MPC cost function, the
horizon length is p, and the manipulated variable changes m times, where m is the
control horizon.

The two cost functions are equivalent if the MPC cost function is:

J u y k i Qy k i u k i Ru k i x k p Q x kT T

i

p
T

p() () () () () () (= + + + + - + - + +

=

-

Â 1 1

1

1

++ p)

where Qp is a penalty applied at the last (i.e., terminal) prediction horizon step, and
the prediction and control horizons are equal, i.e., p = m. The required Qp is the
Ricatti matrix that you can calculate using the Control System Toolbox lqr and lqry
commands. The value is a positive definite symmetric matrix.

The following procedure shows how to design an unconstrained MPC controller that
provides performance equivalent to a LQR controller:

1 Define a plant with one input and two outputs.

The plant is a double-integrator, represented as a state-space model in discrete-time
with sampling interval 0.1 seconds.

4 Case-Study Examples

4-84

A = [1 0;0.1 1];

B = [0.1;0.005];

C = eye(2);

D = zeros(2,1);

Ts = 0.1;

Plant = ss(A,B,C,D,Ts);

Plant.InputName = {'u'};

Plant.OutputName = {'x_1','x_2'};

2 Design an LQR controller with output feedback for the plant.

Q = eye(2);

R = 1;

[K,Qp] = lqry(Plant,Q,R);

Q and R are output and input weight matrices, respectively. Qp is the Ricatti matrix.

3 Design an MPC controller equivalent to the LQR controller.

To implement Equation 4-2, compute L, the Cholesky decomposition of Qp, such that
LTL= Qp. Then, define auxiliary unmeasured output variables ya(k) = Lx(k) such
that ya

Tya = xTQpx. For the first p-1 prediction horizon steps, the standard Q and
R weights apply to the original u and y, and ya has a zero penalty. On step p, the
original u and y have zero penalties, and ya has a unity penalty.

a Augment the plant model, and specify the augmented outputs as unmeasured.

NewPlant = Plant;

cholP = chol(Qp);

set(NewPlant,'C',[C;cholP],'D',[D;zeros(2,1)],...

 'OutputName',{'x_1','x_2','Cx_1','Cx_2'})

NewPlant.InputGroup.MV = 1;

NewPlant.OutputGroup.MO = [1 2];

NewPlant.OutputGroup.UO = [3 4];

b Create an MPC controller with equal prediction and control horizons.

P = 3;

M = 3;

MPCobj = mpc(NewPlant,Ts,P,M);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 Providing LQR Performance Using Terminal Penalty

4-85

 for output(s) y1 and zero weight for output(s) y2 y3 y4

When there are no constraints, you can use a rather short horizon (in this case, p
≥ 1 gives identical results).

c Specify weights for manipulated variables (MV) and output variables (OV).

ywt = sqrt(diag(Q))';

uwt = sqrt(diag(R))';

MPCobj.Weights.OV = [ywt 0 0];

MPCobj.Weights.MV = uwt;

MPCobj.Weights.MVrate = 1e-6;

The two augmented outputs have zero weights during the prediction horizon.
d Specify terminal weights.

To obtain the desired effect, define unity weights for these at the final point in
the horizon.

U = struct('Weight', uwt);

Y = struct('Weight', [0 0 1 1]);

setterminal(MPCobj, Y, U)

The first two states receive zero weight at the terminal point, and the input
weight is unchanged.

e Remove default state estimator.

The model states are measured directly, so the default MPC state estimator is
unnecessary.

setoutdist(MPCobj,'model',tf(zeros(4,1)))

setEstimator(MPCobj,[],C)

The setoutdist command removes the output disturbances from the output
channels, and the setEstimator command sets the controller state estimates
equal to the measured output values.

4 Compare the control performance of LQR, MPC with terminal weights, and a
standard MPC.

a Compute closed-loop response with LQR controller.

clsys = feedback(Plant,K);

4 Case-Study Examples

4-86

Tstop = 6;

x0 = [0.2;0.2];

[yLQR,tLQR] = initial(clsys,x0,Tstop);

b Compute closed-loop response with MPC with terminal weights.

SimOptions = mpcsimopt(MPCobj);

SimOptions.PlantInitialState = x0;

r = zeros(1,4);

[y,t,u] = sim(MPCobj,ceil(Tstop/Ts),r,SimOptions);

Cost = sum(sum(y(:,1:2)*diag(ywt).*y(:,1:2))) + sum(u*diag(uwt).*u);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

c Compute closed-loop response with standard MPC controller.

MPCobjSTD = mpc(Plant,Ts); % Default P = 10, M = 2

MPCobjSTD.Weights.MV = uwt;

MPCobjSTD.Weights.MVrate = 1e-6;

MPCobjSTD.Weights.OV = ywt;

SimOptions = mpcsimopt(MPCobjSTD);

SimOptions.PlantInitialState = x0;

r = zeros(1,2);

[ySTD,tSTD,uSTD] = sim(MPCobjSTD,ceil(Tstop/Ts),r,SimOptions);

CostSTD = sum(sum(ySTD*diag(ywt).*ySTD)) + sum(uSTD*uwt.*uSTD);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Assuming no disturbance added to measured output channel #2.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

d Compare the responses.

figure

h1 = line(tSTD,ySTD,'color','r');

h2 = line(t,y(:,1:2),'color','b');

h3 = line(tLQR,yLQR,'color','m','marker','o','linestyle','none');

xlabel('Time')

ylabel('Plant Outputs')

legend([h1(1) h2(1) h3(1)],'Standard MPC','MPC with Terminal Weights','LQR','Location','NorthEast')

 Providing LQR Performance Using Terminal Penalty

4-87

The plot shows that the MPC controller with the terminal weights provides
faster settling to the origin than the standard MPC. The LQR controller and
MPC with terminal weights provide identical control performance.

As reported by Scokaert and Rawlings [1], the computed Cost value is 2.23,
identical to that provided by the LQR controller. The computed CostSTD value
for the standard MPC is 4.82, more than double compared to Cost.

You can improve the standard MPC by retuning. For example, use the same
state estimation strategy. If the prediction and control horizons are then
increased, it provides essentially the same performance.

4 Case-Study Examples

4-88

This example shows that using a terminal penalty can eliminate the need to tune the
MPC prediction and control horizons for the unconstrained case. If your application
includes constraints, using a terminal weight is insufficient to guarantee nominal
stability. You must also choose appropriate horizons and possibly add terminal
constraints. For an in-depth discussion, see Rawlings and Mayne [2].

Although you can design and implement such a controller in Model Predictive Control
Toolbox software, you might find designing the standard MPC controller more
convenient.

References

[1] Scokaert, P. O. M. and J. B. Rawlings “Constrained linear quadratic regulation” IEEE
Transactions on Automatic Control (1998), Vol. 43, No. 8, pp. 1163-1169.

[2] Rawlings, J. B., and David Q. Mayne “Model Predictive Control: Theory and Design”
Nob Hill Publishing, 2010.

Related Examples
• “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”

More About
• “Terminal Weights and Constraints” on page 2-30

 Real-Time Control with OPC Toolbox

4-89

Real-Time Control with OPC Toolbox

This example shows how to implement an online model predictive controller application
using the OPC client supplied with the OPC Toolbox™.

The example uses the Matrikon™ Simulation OPC server to simulate the behavior of an
industrial process on Windows® operating system.

Download the Matrikon™ OPC Simulation Server from "www.matrikon.com"

Download and install the server and set it running either as a service or as an
application.

This example needs OPC Toolbox™.

if ~mpcchecktoolboxinstalled('opc')

 disp('The example needs OPC Toolbox(TM).')

end

The example needs OPC Toolbox(TM).

Establish a Connection to the OPC Server

Use OPC Toolbox commands to connect to the Matrikon OPC Simulation Server.

if mpcchecktoolboxinstalled('opc')

 % Clear any existing opc connections.

 opcreset

 % Flush the callback persistent variables.

 clear mpcopcPlantStep;

 clear mpcopcMPCStep;

 try

 h = opcda('localhost','Matrikon.OPC.Simulation.1');

 connect(h);

 catch ME

 disp('The Matrikon(TM) OPC Simulation Server must be running on the local machine.')

 return

 end

end

Set up the Plant OPC I/O

In practice the plant would be a physical process, and the OPC tags which define its
I/O would already have been created on the OPC server. However, since in this case

4 Case-Study Examples

4-90

a simulation OPC server is being used, the plant behavior must be simulated. This is
achieved by defining tags for the plant manipulated and measured variables and creating
a callback (mpcopcPlantStep) to simulate plant response to changes in the manipulated
variables. Two OPC groups are required, one to represent the two manipulated variables
to be read by the plant simulator and another to write back the two measured plant
outputs storing the results of the plant simulation.

if mpcchecktoolboxinstalled('opc')

 % Build an opc group for 2 plant inputs and initialize them to zero.

 plant_read = addgroup(h,'plant_read');

 imv1 = additem(plant_read,'Bucket Brigade.Real8', 'double');

 writeasync(imv1,0);

 imv2 = additem(plant_read,'Bucket Brigade.Real4', 'double');

 writeasync(imv2,0);

 % Build an opc group for plant outputs.

 plant_write = addgroup(h,'plant_write');

 opv1 = additem(plant_write,'Bucket Brigade.Time', 'double');

 opv2 = additem(plant_write,'Bucket Brigade.Money', 'double');

 plant_write.WriteAsyncFcn = []; % Suppress command line display.

end

Specify the MPC Controller Which Will Control the Simulated Plant

Create plant model.

plant_model = ss([-.2 -.1; 0 -.05],eye(2,2),eye(2,2),zeros(2,2));

disc_plant_model = c2d(plant_model,1);

% We assume no model mismatch, a control horizon 6 samples and

% prediction horizon 20 samples.

mpcobj = mpc(disc_plant_model,1,20,6);

mpcobj.weights.ManipulatedVariablesRate = [1 1];

% Build an internal MPC object structure so that the MPC object

% is not rebuilt each callback execution.

state = mpcstate(mpcobj);

y1 = mpcmove(mpcobj,state,[1;1]',[1 1]');

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Real-Time Control with OPC Toolbox

4-91

Build the OPC I/O for the MPC Controller

Build two OPC groups, one to read the two measured plant outputs and the other to
write back the two manipulated variables.

if mpcchecktoolboxinstalled('opc')

 % Build an opc group for MPC inputs.

 mpc_read = addgroup(h,'mpc_read');

 impcpv1 = additem(mpc_read,'Bucket Brigade.Time', 'double');

 writeasync(impcpv1,0);

 impcpv2 = additem(mpc_read,'Bucket Brigade.Money', 'double');

 writeasync(impcpv2,0);

 impcref1 = additem(mpc_read,'Bucket Brigade.Int2', 'double');

 writeasync(impcref1,1);

 impcref2 = additem(mpc_read,'Bucket Brigade.Int4', 'double');

 writeasync(impcref2,1);

 % Build an opc group for mpc outputs.

 mpc_write = addgroup(h,'mpc_write');

 additem(mpc_write,'Bucket Brigade.Real8', 'double');

 additem(mpc_write,'Bucket Brigade.Real4', 'double');

 % Suppress command line display.

 mpc_write.WriteAsyncFcn = [];

end

Build OPC Groups to Trigger Execution of the Plant Simulator & Controller

Build two opc groups based on the same external opc timer to trigger execution of both
plant simulation and MPC execution when the contents of the OPC time tag changes.

if mpcchecktoolboxinstalled('opc')

 gtime = addgroup(h,'time');

 time_tag = additem(gtime,'Triangle Waves.Real8');

 gtime.UpdateRate = 1;

 gtime.DataChangeFcn = {@mpcopcPlantStep plant_read plant_write disc_plant_model};

 gmpctime = addgroup(h,'mpctime');

 additem(gmpctime,'Triangle Waves.Real8');

 gmpctime.UpdateRate = 1;

 gmpctime.DataChangeFcn = {@mpcopcMPCStep mpc_read mpc_write mpcobj};

end

Log Data from the Plant Measured Outputs

Log the plant measured outputs from tags 'Bucket Brigade.Money' and 'Bucket
Brigade.Money'.

4 Case-Study Examples

4-92

if mpcchecktoolboxinstalled('opc')

 mpc_read.RecordsToAcquire = 40;

 start(mpc_read);

 while mpc_read.RecordsAcquired < mpc_read.RecordsToAcquire

 pause(3)

 fprintf('Logging data: Record %d / %d',mpc_read.RecordsAcquired,mpc_read.RecordsToAcquire)

 end

 stop(mpc_read);

end

Extract and Plot the Logged Data

if mpcchecktoolboxinstalled('opc')

 [itemID, value, quality, timeStamp, eventTime] = getdata(mpc_read,'double');

 plot((timeStamp(:,1)-timeStamp(1,1))*24*60*60,value)

 title('Measured Outputs Logged from Tags Bucket Brigade.Time,Bucket Brigade.Money')

 xlabel('Time (secs)');

end

 Real-Time Control with OPC Toolbox

4-93

4 Case-Study Examples

4-94

Simulation and Code Generation Using Simulink Coder

This example shows how to simulate and generate real-time code for an MPC Controller
block with Simulink Coder. Code can be generated in both single and double precisions.

Required Products

To run this example, Simulink® and Simulink® Coder™ are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('simulinkcoder')

 disp('Simulink(R) Coder(TM) is required to run this example.');

 return

end

Setup Environment

You must have write-permission to generate the relevant files and the executable.
So, before starting simulation and code generation, change the current directory to a
temporary directory.

cwd = pwd;

tmpdir = tempname;

mkdir(tmpdir);

cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time

p = 10; %Prediction horizon

m = 2; %Control horizon

Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights

MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints

OV = struct('Min',-2,'Max',2); % Output constraints

 Simulation and Code Generation Using Simulink Coder

4-95

mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Code in Double-Precision

By default, MPC Controller blocks use double-precision in simulation and code
generation.

Simulate the model in Simulink.

mdl1 = 'mpc_rtwdemo';

open_system(mdl1);

sim(mdl1);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The controller effort and the plant output are saved into base workspace as variables u
and y, respectively.

Build the model with the rtwbuild command.

disp('Generating C code... Please wait until it finishes.');

4 Case-Study Examples

4-96

set_param(mdl1,'RTWVerbose','off');

rtwbuild(mdl1);

Generating C code... Please wait until it finishes.

Starting build procedure for model: mpc_rtwdemo

Successful completion of build procedure for model: mpc_rtwdemo

On a Windows system, an executable file named "mpc_rtwdemo.exe" appears in the
temporary directory after the build process finishes.

Run the executable.

if ispc

 disp('Running executable...');

 status = system(mdl1);

else

 disp('The example only runs the executable on Windows system.');

end

Running executable...

** starting the model **

** created mpc_rtwdemo.mat **

After the executable completes successfully (status=0), a data file named
"mpc_rtwdemo.mat" appears in the temporary directory.

Compare the responses from the generated code (rt_u and rt_y) with the responses from
the previous simulation in Simulink (u and y).

 Simulation and Code Generation Using Simulink Coder

4-97

4 Case-Study Examples

4-98

They are numerically equal.

Simulate and Generate Code in Single-Precision

You can also configure the MPC block to use single-precision in simulation and code
generation.

mdl2 = 'mpc_rtwdemo_single';

 Simulation and Code Generation Using Simulink Coder

4-99

open_system(mdl2);

To do that, open the MPC block dialog and select "single" as the "output data type" at the
bottom of the dialog.

open_system([mdl2 '/MPC Controller']);

Simulate the model in Simulink.

close_system([mdl2 '/MPC Controller']);

sim(mdl2);

The controller effort and the plant output are saved into base workspace as variables u1
and y1, respectively.

Build the model with the rtwbuild command.

disp('Generating C code... Please wait until it finishes.');

set_param(mdl2,'RTWVerbose','off');

rtwbuild(mdl2);

Generating C code... Please wait until it finishes.

4 Case-Study Examples

4-100

Starting build procedure for model: mpc_rtwdemo_single

Successful completion of build procedure for model: mpc_rtwdemo_single

On a Windows system, an executable file named "mpc_rtwdemo_single.exe" appears in
the temporary directory after the build process finishes.

Run the executable.

if ispc

 disp('Running executable...');

 status = system(mdl2);

else

 disp('The example only runs the executable on Windows system.');

end

Running executable...

** starting the model **

** created mpc_rtwdemo_single.mat **

After the executable completes successfully (status=0), a data file named
"mpc_rtwdemo_single.mat" appears in the temporary directory.

Compare the responses from the generated code (rt_u1 and rt_y1) with the responses
from the previous simulation in Simulink (u1 and y1).

 Simulation and Code Generation Using Simulink Coder

4-101

4 Case-Study Examples

4-102

They are numerically equal.

Close the Simulink model.

bdclose(mdl1);

bdclose(mdl2);

 Simulation and Code Generation Using Simulink Coder

4-103

cd(cwd)

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 3-5

4 Case-Study Examples

4-104

Simulation and Structured Text Generation Using PLC Coder

This example shows how to simulate and generate Structured Text for an MPC
Controller block using PLC Coder software. The generated code uses single-precision.

Required Products

To run this example, Simulink® and Simulink® PLC Coder™ are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('plccoder')

 disp('Simulink(R) PLC Coder(TM) is required to run this example.');

 return

end

Simulink(R) PLC Coder(TM) is required to run this example.

Setup Environment

You must have write-permission to generate the relevant files and the executable.
So, before starting simulation and code generation, change the current directory to a
temporary directory.

cwd = pwd;

tmpdir = tempname;

mkdir(tmpdir);

cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time

p = 10; %Prediction horizon

m = 2; %Control horizon

Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights

 Simulation and Structured Text Generation Using PLC Coder

4-105

MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints

OV = struct('Min',-2,'Max',2); % Output constraints

mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Structured Text

Open the Simulink model.

mdl = 'mpc_plcdemo';

open_system(mdl);

To generate structured text for the MPC Controller block, complete the following two
steps:

• Configure the MPC block to use single precision. Select "single" in the "Output data
type" combo box in the MPC block dialog.

open_system([mdl '/Control System/MPC Controller']);

• Put MPC block inside a subsystem block and treat the subsystem block as an atomic
unit. Select the "Treat as atomic unit" checkbox in the subsystem block dialog.

4 Case-Study Examples

4-106

Simulate the model in Simulink.

close_system([mdl '/Control System/MPC Controller']);

open_system([mdl '/Outputs//References']);

open_system([mdl '/Inputs']);

sim(mdl);

To generate code with the PLC Coder, use the plcgeneratecode command.

disp('Generating PLC structure text... Please wait until it finishes.');

 Simulation and Structured Text Generation Using PLC Coder

4-107

plcgeneratecode([mdl '/Control System']);

The Message Viewer dialog box shows that PLC code generation was successful.

Close the Simulink model.

bdclose(mdl);

cd(cwd)

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 3-5

4 Case-Study Examples

4-108

Generate Code To Compute Optimal MPC Moves in MATLAB

This example shows how to use the mpcmoveCodeGeneration command to generate C
code to compute optimal MPC control moves for real-time applications.

Plant Model

The plant is a single-input, single-output, stable, 2nd order linear plant.

plant = tf(5,[1 0.8 3]);

Convert the plant to discrete-time, state-space form, and specify a zero initial states
vector.

Ts = 1;

plant = ss(c2d(plant,Ts));

x0 = zeros(size(plant.B,1),1);

MPC Controller Design

Create an MPC controller with default horizons.

mpcobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify controller tuning weights.

mpcobj.Weights.MV = 0;

mpcobj.Weights.MVrate = 0.5;

mpcobj.Weights.OV = 1;

Specify initial constraints on the manipualted variable and plant output. These
constraints will be updated at run-time.

mpcobj.MV.Min = -1;

mpcobj.MV.Max = 1;

mpcobj.OV.Min = -1;

mpcobj.OV.Max = 1;

 Generate Code To Compute Optimal MPC Moves in MATLAB

4-109

Simulating Online Constraint Changes with mpcmove Command

In the closed-loop simulation, constraints are updated and fed into the mpcmove
command at each control interval.

yMPCMOVE = [];

uMPCMOVE = [];

Set the simulation time.

Tsim = 20;

Initialize the online constraint data.

MVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

MVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

OVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

OVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

Initialize plant states.

x = x0;

Initialize MPC states.

xmpc = mpcstate(mpcobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run a closed-loop simulation by calling mpcmove in a loop.

options = mpcmoveopt;

for ct = 1:round(Tsim/Ts)+1

 % Update and store plant output.

 y = plant.C*x;

 yMPCMOVE = [yMPCMOVE y];

 % Update constraints.

 options.MVMin = MVMinData(ct);

 options.MVMax = MVMaxData(ct);

4 Case-Study Examples

4-110

 options.OutputMin = OVMinData(ct);

 options.OutputMax = OVMaxData(ct);

 % Compute control actions.

 u = mpcmove(mpcobj,xmpc,y,1,[],options);

 % Update and store plant state.

 x = plant.A*x + plant.B*u;

 uMPCMOVE = [uMPCMOVE u];

end

Validate Simulation Results with mpcmoveCodeGeneration Command

To prepare for generating code that computes optimal control moves from MATLAB, it is
recommended to reproduce the same control results with the mpcmoveCodeGeneration
command before using the codegen command from the MATLAB Coder product.

yCodeGen = [];

uCodeGen = [];

Initialize plant states.

x = x0;

Use getCodeGenerationData to create data structures to use with
mpcmoveCodeGeneration.

[coredata, statedata, onlinedata] = getCodeGenerationData(mpcobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run a closed-loop simulation by calling mpcmoveCodeGeneration in a loop.

for ct = 1:round(Tsim/Ts)+1

 % Update and store plant output.

 y = plant.C*x;

 yCodeGen = [yCodeGen y];

 % Update measured output in online data.

 onlinedata.signals.ym = y;

 % Update reference in online data.

 onlinedata.signals.ref = 1;

 % Update constraints in online data.

 onlinedata.limits.umin = MVMinData(ct);

 onlinedata.limits.umax = MVMaxData(ct);

 onlinedata.limits.ymin = OVMinData(ct);

 Generate Code To Compute Optimal MPC Moves in MATLAB

4-111

 onlinedata.limits.ymax = OVMaxData(ct);

 % Compute control actions.

 [u, statedata] = mpcmoveCodeGeneration(coredata, statedata, onlinedata);

 % Update and store plant state.

 x = plant.A*x + plant.B*u;

 uCodeGen = [uCodeGen u];

end

The simulation results are identical to those using mpcmove.

t = 0:Ts:Tsim;

figure;

subplot(1,2,1)

plot(t,yMPCMOVE,'--*',t,yCodeGen,'o');

grid

legend('mpcmove','codegen')

title('Plant Output')

subplot(1,2,2)

plot(t,uMPCMOVE,'--*',t,uCodeGen,'o');

grid

legend('mpcmove','codegen')

title('Controller Moves')

4 Case-Study Examples

4-112

Genarating MEX Function From mpcmoveCodeGeneration Command

To generate C code from the mpcmoveCodeGeneration command, use the codegen
command from the MATLAB Coder product. In this example, generate a MEX function
mpcmoveMEX to reproduce the simulation results in MATLAB. You can change the code
generation target to C/C++ static library, dynamic library, executable, etc. by using a
different set of coder.config settings.

When generating C code for the mpcmoveCodeGeneration command:

• Since no data integrity checks are performed on the input arguments, you must make
sure that all the input data has the correct types, dimensions, and values.

 Generate Code To Compute Optimal MPC Moves in MATLAB

4-113

• You must define the first input argument, mpcmove_struct, as a constant when
using codegen command.

• The second input argument, mpcmove_state, is updated by the command and
returned as the second output. In most cases, you do not need to modify its contents
and should simply pass it back to the command in the next control interval. The only
exception is when custom state estimation is enabled, in which case you must provide
the current state estimation with this argument.

if ~license ('test', 'MATLAB_Coder')

 disp('MATLAB Coder(TM) is required to run this example.')

 return

end

Generate MEX function.

fun = 'mpcmoveCodeGeneration';

funOutput = 'mpcmoveMEX';

Cfg = coder.config('mex');

Cfg.DynamicMemoryAllocation = 'off';

codegen('-config',Cfg,fun,'-o',funOutput,'-args',...

 {coder.Constant(coredata),statedata,onlinedata});

Initialize data storage.

yMEX = [];

uMEX = [];

% Initialize plant states.

x = x0;

Use getCodeGenerationData to create data structures to use with
mpcmoveCodeGeneration.

[coredata, statedata, onlinedata] = getCodeGenerationData(mpcobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run a closed-loop simulation by calling the generated mpcmoveMEX functions in a loop.

for ct = 1:round(Tsim/Ts)+1

 % Update and store the plant output.

 y = plant.C*x;

4 Case-Study Examples

4-114

 yMEX = [yMEX y];

 % Update measured output in online data.

 onlinedata.signals.ym = y;

 % Update reference in online data.

 onlinedata.signals.ref = 1;

 % Update constraints in online data.

 onlinedata.limits.umin = MVMinData(ct);

 onlinedata.limits.umax = MVMaxData(ct);

 onlinedata.limits.ymin = OVMinData(ct);

 onlinedata.limits.ymax = OVMaxData(ct);

 % Compute control actions.

 [u, statedata] = mpcmoveMEX(coredata, statedata, onlinedata);

 % Update and store the plant state.

 x = plant.A*x + plant.B*u;

 uMEX = [uMEX u];

end

The simulation results are identical to the those using mpcmove.

figure;

subplot(1,2,1)

plot(t,yMPCMOVE,'--*',t,yMEX,'o');

grid

legend('mpcmove','mex')

title('Plant Output')

subplot(1,2,2)

plot(t,uMPCMOVE,'--*',t,uMEX,'o');

grid

legend('mpcmove','mex')

title('Controller Moves')

 Generate Code To Compute Optimal MPC Moves in MATLAB

4-115

See Also
getCodeGenerationData | mpcmoveCodeGeneration

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 3-5

4 Case-Study Examples

4-116

Setting Targets for Manipulated Variables

This example shows how to design a model predictive controller for a plant with two
inputs and one output with target set-point for a manipulated variable.

Define Plant Model

The linear plant model has two inputs and two outputs.

N1 = [3 1];

D1 = [1 2*.3 1];

N2 = [2 1];

D2 = [1 2*.5 1];

plant = ss(tf({N1,N2},{D1,D2}));

A = plant.a;

B = plant.b;

C = plant.c;

D = plant.d;

x0 = [0 0 0 0]';

Design MPC Controller

Create MPC controller.

Ts = 0.4; % Sampling time

mpcobj = mpc(plant,Ts,20,5);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify weights.

mpcobj.weights.manipulated = [0.3 0]; % weight difference MV#1 - Target#1

mpcobj.weights.manipulatedrate = [0 0];

mpcobj.weights.output = 1;

Define input specifications.

mpcobj.MV = struct('RateMin',{-0.5;-0.5},'RateMax',{0.5;0.5});

Specify target set-point u=2 for the first manipulated variable.

mpcobj.MV(1).Target=2;

 Setting Targets for Manipulated Variables

4-117

Simulation Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

Simulate.

mdl = 'mpc_utarget';

open_system(mdl) % Open Simulink(R) Model

sim(mdl); % Start Simulation

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Case-Study Examples

4-118

 Setting Targets for Manipulated Variables

4-119

bdclose(mdl)

4 Case-Study Examples

4-120

Specifying Alternative Cost Function with Off-Diagonal Weight
Matrices

This example shows how to use non-diagonal weight matrices in a model predictive
controller.

Define Plant Model and MPC Controller

The linear plant model has two inputs and two outputs.

plant = ss(tf({1,1;1,2},{[1 .5 1],[.7 .5 1];[1 .4 2],[1 2]}));

[A,B,C,D] = ssdata(plant);

Ts = 0.1; % sampling time

plant = c2d(plant,Ts); % convert to discrete time

Create MPC controller.

p=20; % prediction horizon

m=2; % control horizon

mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.

mpcobj.MV = struct('Min',{-3;-2},'Max',{3;2},'RateMin',{-100;-100},'RateMax',{100;100});

Define non-diagonal output weight. Note that it is specified inside a cell array.

OW = [1 -1]'*[1 -1];

% Non-diagonal output weight, corresponding to ((y1-r1)-(y2-r2))^2

mpcobj.Weights.OutputVariables = {OW};

% Non-diagonal input weight, corresponding to (u1-u2)^2

mpcobj.Weights.ManipulatedVariables = {0.5*OW};

Simulate Using SIM Command

Specify simulation options.

Tstop = 30; % simulation time

Tf = round(Tstop/Ts); % number of simulation steps

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

4-121

r = ones(Tf,1)*[1 2]; % reference trajectory

Run the closed-loop simulation and plot results.

[y,t,u] = sim(mpcobj,Tf,r);

subplot(211)

plot(t,y(:,1)-r(1,1)-y(:,2)+r(1,2));grid

title('(y_1-r_1)-(y_2-r_2)');

subplot(212)

plot(t,u);grid

title('u');

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Case-Study Examples

4-122

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this part of the example.')

 return

end

Now simulate closed-loop MPC in Simulink®.

mdl = 'mpc_weightsdemo';

open_system(mdl);

sim(mdl)

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

4-123

4 Case-Study Examples

4-124

bdclose(mdl);

 Review Model Predictive Controller for Stability and Robustness Issues

4-125

Review Model Predictive Controller for Stability and Robustness
Issues

This example shows how to use the review command to detect potential issues with a
model predictive controller design.

The Fuel Gas Blending Process

The example application is a fuel gas blending process. The objective is to blend six gases
to obtain a fuel gas, which is then burned to provide process heating. The fuel gas must
satisfy three quality standards in order for it to burn reliably and with the expected
heat output. The fuel gas header pressure must also be controlled. Thus, there are four
controlled output variables. The manipulated variables are the six feed gas flow rates.

Inputs:

1. Natural Gas (NG)

2. Reformed Gas (RG)

3. Hydrogen (H2)

4. Nitrogen (N2)

5. Tail Gas 1 (T1)

6. Tail Gas 2 (T2)

Outputs:

1. High Heating Value (HHV)

2. Wobbe Index (WI)

3. Flame Speed Index (FSI)

4. Header Pressure (P)

The fuel gas blending process was studied by Muller et al.: "Modeling, validation, and
control of an industrial fuel gas blending system", C.J. Muller, I.K. Craig, N.L. Ricker, J.
of Process Control, in press, 2011.

Linear Plant Model

Use the following linear plant model as the prediction model for the controller. This
state-space model, applicable at a typical steady-state operating point, uses the time unit
of hours.

a = diag([-28.6120, -28.6822, -28.5134, -0.0281, -23.2191, -23.4266, ...

4 Case-Study Examples

4-126

 -22.9377, - 0.0101, -26.4877, -26.7950, -27.2210, -0.0083, ...

 -23.0890, -23.0062, -22.9349, -0.0115, -25.8581, -25.6939, ...

 -27.0793, -0.0117, -22.8975, -22.8233, -21.1142, -0.0065]);

b = zeros(24,6);

b(1: 4,1) = [4, 4, 8, 32]';

b(5: 8,2) = [2, 2, 4, 32]';

b(9:12,3) = [2, 2, 4, 32]';

b(13:16,4) = [4, 4, 8, 32]';

b(17:20,5) = [2, 2, 4, 32]';

b(21:24,6) = [1, 2, 1, 32]';

c = [diag([6.1510, 7.6785, -5.9312, 34.2689]), ...

 diag([-2.2158, -3.1204, 2.6220, 35.3561]), ...

 diag([-2.5223, 1.1480, 7.8136, 35.0376]), ...

 diag([-3.3187, -7.6067, -6.2755, 34.8720]), ...

 diag([-1.6583, -2.0249, 2.5584, 34.7881]), ...

 diag([-1.6807, -1.2217, 1.0492, 35.0297])];

d = zeros(4,6);

Plant = ss(a, b, c, d);

By default, all the plant inputs are manipulated variables.

Plant.InputName = {'NG', 'RG', 'H2', 'N2', 'T1', 'T2'};

By default, all the plant outputs are measured outputs.

Plant.OutputName = {'HHV', 'WI', 'FSI', 'P'};

Transport delay is added to plant outputs to reflect the delay in the sensors.

Plant.OutputDelay = [0.00556 0.0167 0.00556 0];

Initial Controller Design

Construct an initial model predictive controller based on design requirements.

Specify sampling time, horizons and steady-state values.

The sampling time is that of the sensors (20 seconds). The prediction horizon is
approximately equal to the plant settling time (39 intervals). The control horizon uses
four blocked moves that have lengths of 2, 6, 12 and 19 intervals respectively. The
nominal operating conditions are non-zero. The output measurement noise is white noise
with magnitude of 0.001.

MPC_verbosity = mpcverbosity('off'); % Disable MPC message displaying at command line

 Review Model Predictive Controller for Stability and Robustness Issues

4-127

Ts = 20/3600; % Time units are hours.

Obj = mpc(Plant, Ts, 39, [2, 6, 12, 19]);

Obj.Model.Noise = ss(0.001*eye(4));

Obj.Model.Nominal.Y = [16.5, 25, 43.8, 2100];

Obj.Model.Nominal.U = [1.4170, 0, 2, 0, 0, 26.5829];

Specify lower and upper bounds on manipulated variables.

Since all the manipulated variables are flow rates of gas streams, their lower bounds are
zero. All the MV constraints are hard (MinECR and MaxECR = 0) by default.

MVmin = zeros(1,6);

MVmax = [15, 20, 5, 5, 30, 30];

for i = 1:6

 Obj.MV(i).Min = MVmin(i);

 Obj.MV(i).Max = MVmax(i);

end

Specify lower and upper bounds on manipulated variable increments.

The bounds are set large enough to allow full range of movement in one interval. All the
MV rate constraints are hard (RateMinECR and RateMaxECR = 0) by default.

for i = 1:6

 Obj.MV(i).RateMin = -MVmax(i);

 Obj.MV(i).RateMax = MVmax(i);

end

Specify lower and upper bounds on plant outputs.

All the OV constraints are soft (MinECR and MaxECR = 0) by default.

OVmin = [16.5, 25, 39, 2000];

OVmax = [18.0, 27, 46, 2200];

for i = 1:4

 Obj.OV(i).Min = OVmin(i);

 Obj.OV(i).Max = OVmax(i);

end

Specify weights on manipulated variables.

MV weights are specified based on the known costs of each feed stream. This tells MPC
controller how to move the six manipulated variables in order to minimize the cost of the

4 Case-Study Examples

4-128

blended fuel gas. The weights are normalized so the maximum weight is approximately
1.0.

Obj.Weights.MV = [54.9, 20.5, 0, 5.73, 0, 0]/55;

Specify weights on manipulated variable increments.

They are small relative to the maximum MV weight so the MVs are free to vary.

Obj.Weights.MVrate = 0.1*ones(1,6);

Specify weights on plant outputs.

The OV weights penalize deviations from specified setpoints and would normally be
"large" relative to the other weights. Let us first consider the default values, which equal
the maximum MV weight specified above.

Obj.Weights.OV = [1, 1, 1, 1];

Using the review Command to Improve the Initial Design

Review the initial controller design.

review(Obj)

 Review Model Predictive Controller for Stability and Robustness Issues

4-129

The summary table shown above lists three warnings and one error. Let's consider these
in turn. Click QP Hessian Matrix Validity and scroll down to display the warning. It
indicates that the plant signal magnitudes differ significantly. Specifically, the pressure
response is much larger than the others.

4 Case-Study Examples

4-130

Examination of the specified OV bounds shows that the spans are quite different, and
the pressure span is two orders of magnitude larger than the others. It is good practice
to specify MPC scale factors to account for the expected differences in signal magnitudes.
We are already weighting MVs based on relative cost, so we focus on the OVs only.

Calculate OV spans

OVspan = OVmax - OVmin;

%

% Use these as the specified scale factors

for i = 1:4

 Obj.OV(i).ScaleFactor = OVspan(i);

end

% Use review to verify that the scale factor warning has disappeared.

review(Obj);

%

% <<../reviewDemo03.png>>

The next warning indicates that the controller does not drive the OVs to their targets at
steady state. Click Closed-Loop Steady-State Gains to see a list of the non-zero gains.

 Review Model Predictive Controller for Stability and Robustness Issues

4-131

4 Case-Study Examples

4-132

The first entry in the list shows that adding a sustained disturbance of unit magnitude
to the HHV output would cause the HHV to deviate 0.0860 units from its steady-
state target, assuming no constraints are active. The second entry shows that a unit
disturbance in WI would cause a steady-state deviation ("offset") of -0.0345 in HHV, etc.

Since there are six MVs and only four OVs, excess degrees of freedom are available and
you might be surprised to see non-zero steady-state offsets. The non-zero MV weights we
have specified in order to drive the plant toward the most economical operating condition
are causing this.

Non-zero steady-state offsets are often undesirable but are acceptable in this application
because: # The primary objective is to minimize the blend cost. The gas quality (HHV,
etc.) can vary freely within the specified OV limits. # The small offset gain magnitudes
indicate that the impact of disturbances would be small. # The OV limits are soft
constraints. Small, short-term violations are acceptable.

View the second warning by clicking Hard MV Constraints, which indicates a potential
hard-constraint conflict.

 Review Model Predictive Controller for Stability and Robustness Issues

4-133

4 Case-Study Examples

4-134

If an external event causes the NG to go far below its specified minimum, the constraint
on its rate of increase might make it impossible to return the NG within bounds in one
interval. In other words, when you specify both MV.Min and MV.RateMax, the controller
would not be able to find an optimal solution if the most recent MV value is less than
(MV.Min - MV.RateMax). Similarly, there is a potential conflict when you specify both
MV.Max and MV.RateMin.

An MV constraint conflict would be extremely unlikely in the gas blending application,
but it's good practice to eliminate the possibility by softening one of the two constraints.
Since the MV minimum and maximum values are physical limits and the increment
bounds are not, we soften the increment bounds as follows:

for i = 1:6

 Obj.MV(i).RateMinECR = 0.1;

 Obj.MV(i).RateMaxECR = 0.1;

end

Review the new controller design.

review(Obj)

 Review Model Predictive Controller for Stability and Robustness Issues

4-135

The MV constraint conflict warning has disappeared. Now click Soft Constraints to
view the error message.

4 Case-Study Examples

4-136

We see that the delay in the WI output makes it impossible to satisfy bounds on that
variable until at least three control intervals have elapsed. The WI bounds are soft but it
is poor practice to include unattainable constraints in a design. We therefore modify the
WI bound specifications such that it is unconstained until the 4th prediction horizon step.

Obj.OV(2).Min = [-Inf(1,3), OVmin(2)];

Obj.OV(2).Max = [Inf(1,3), OVmax(2)];

% Ee-issuing the review command to verifies that this eliminates the

% error message (see the next step).

Diagnosing the Impact of Zero Output Weights

Given that the design requirements allow the OVs to vary freely within their limits,
consider zeroing their penalty weights:

Obj.Weights.OV = zeros(1,4);

Review the impact of this design change.

 Review Model Predictive Controller for Stability and Robustness Issues

4-137

review(Obj)

A new warning regarding QP Hessian Matrix Validity has appeared. Click QP Hessian
Matrix Validity warning to see the details.

4 Case-Study Examples

4-138

The review has flagged the zero weights on all four output variables. Since the zero
weights are consistent with the design requirement and the other Hessian tests indicate
that the quadratic programming problem has a unique solution, this warning can be
ignored.

Click Closed-Loop Steady-State Gains to see the second warning. It shows another
consequence of setting the four OV weights to zero. When an OV is not penalized by
a weight, any output disturbance added to it will be ignored, passing through with no
attenuation.

 Review Model Predictive Controller for Stability and Robustness Issues

4-139

Since it is a design requirement, non-zero steady-state offsets are acceptable provided
that MPC is able to hold all the OVs within their specified bounds. It is therefore a good
idea to examine how easily the soft OV constraints can be violated when disturbances are
present.

Reviewing Soft Constraints

Click Soft Constraints to see a list of soft constraints -- in this case an upper and lower
bound on each OV.

4 Case-Study Examples

4-140

 Review Model Predictive Controller for Stability and Robustness Issues

4-141

The Impact Factor column shows that using the default MinECR and MaxECR values
give the pressure (P) a much higher priority than the other OVs. If we want the priorities
to be more comparable, we should increase the pressure constraint ECR values and
adjust the others too. For example, we consider

Obj.OV(1).MinECR = 0.5;

Obj.OV(1).MaxECR = 0.5;

Obj.OV(3).MinECR = 3;

Obj.OV(3).MaxECR = 3;

Obj.OV(4).MinECR = 80;

Obj.OV(4).MaxECR = 80;

Review the impact of this design change.

review(Obj)

Notice from the Sensitivity Ratio column that all the sensitivity ratios are now less than
unity. This means that the soft constraints will receive less attention than other terms in
the MPC objective function, such as deviations of the MVs from their target values. Thus,
it is likely that an output constraint violation would occur.

4 Case-Study Examples

4-142

In order to give the output constraints higher priority than other MPC objectives,
increase the Weights.ECR parameter from default 1e5 to a higher value to harden all the
soft OV constraints.

Obj.Weights.ECR = 1e8;

Review the impact of this design change.

review(Obj)

The controller is now a factor of 100 more sensitive to output constraint violations than
to errors in target tracking.

Reviewing Data Memory Size

Click Memory Size for MPC Data to see the estimated memory size needed to store the
MPC data matrices used on the hardware.

 Review Model Predictive Controller for Stability and Robustness Issues

4-143

In this example, if the controller is running using single precision, it requires 250 KB
of memory to store its matrices. If the controller memory size exceeds the memory
available on the target system, you must redesign the controller to reduce its memory
requirements. Alternatively, increase the memory available on the target system.

mpcverbosity(MPC_verbosity);

[~, hWebBrowser] = web;

close(hWebBrowser);

See Also
review

4 Case-Study Examples

4-144

Control of an Inverted Pendulum on a Cart

This example uses a model predictive controller (MPC) to control an inverted pendulum
on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(TM) is required to run this example.')

 return

end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

 Control of an Inverted Pendulum on a Cart

4-145

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';

load_system(mdlPlant);

open_system([mdlPlant '/Pendulum and Cart System'],'force');

4 Case-Study Examples

4-146

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

 Control of an Inverted Pendulum on a Cart

4-147

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the
cart should return to its original position with a maximum displacement of 1. The
pendulum should also return to the upright position with a peak angle displacement
of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartImplicitMPC';

open_system(mdlMPC);

4 Case-Study Examples

4-148

Although cart velocity x_dot and pendulum angular velocity theta_dot are available
from the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for
prediction, linearize the Simulink plant model at the inital operating point.

Specify linearization input and output points.

io(1) = linio([mdlPlant '/dF'],1,'openinput');

io(2) = linio([mdlPlant '/F'],1,'openinput');

io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');

io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

 Control of an Inverted Pendulum on a Cart

4-149

opspec = operspec(mdlPlant);

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;

opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;

opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);

op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);

plant.InputName = {'dF';'F'};

plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 0

 -11.9115

 -3.2138

 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant);

MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example,
dF is specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

4 Case-Study Examples

4-150

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarily, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;

PredictionHorizon = 50;

ControlHorizon = 5;

mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force can be applied to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj.MV.Min = -200;

mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by by
multiplying the default disturbance model gains by a factor of 10.

 Control of an Inverted Pendulum on a Cart

4-151

Update the input disturbance model.

disturbance_model = getindist(mpcobj);

setindist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #1 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);

setoutdist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);

sim(mdlMPC);

-->Converting model to discrete time.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Case-Study Examples

4-152

 Control of an Inverted Pendulum on a Cart

4-153

In the nonlinear simulation, all the control objectives are successfully achieved.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in
the prediction of plant behavior exceed what the built-in MPC robustness can handle,
and the controller fails to perform properly.

4 Case-Study Examples

4-154

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;

mpcobj.OV(2).Max = pi/2;

mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

bdclose(mdlMPC);

More About
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-42
• “Gain Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 7-39

 Simulate MPC Controller with a Custom QP Solver

4-155

Simulate MPC Controller with a Custom QP Solver
This example shows how to simulate the closed-loop response of an MPC controller with
a custom quadratic programming (QP) solver in Simulink®.

We use an on-line monitoring example, first solving it by using the MPC Toolbox™ built-
in solver, then using the quadprog solver from the Optimization Toolbox™.

Introduction

In the on-line monitoring example, the qp.status output of the MPC Controller block
returns a positive integer whenever the controller obtains a valid solution of the current
run-time QP problem and sets the mv output. The qp.status value corresponds to the
number of iterations used to solve this QP.

If the QP is infeasible for a given control interval, the controller fails to find a solution.
In that case, the mv outport stays at its most recent value and the qp.status outport
returns -1. Similarily, if the maximum number of iterations is reached during
optimization (rare), the mv outport also freezes and the qp.status outport returns 0.

Real-time MPC applications can detect whether the controller is in a "failure" mode (0
or -1) by monitoring the qp.status outport. If a failure occurs, a backup control plan
should be activated. This is essential if there is any chance that the QP could become
infeasible, because the default action (freezing MVs) may lead to unacceptable system
behavior, such as instability. Such a backup plan is, necessarily, application-specific.

MPC Application with Online Monitoring

The plant used in this example is a single-input, single-output system with hard limits
on both the manipulated variable (MV) and the controlled output (OV). The control
objective is to hold the OV at a setpoint of 0. An unmeasured load disturbance is added to
the OV. This disturbance is initially a ramp increase. The controller response eventually
saturates the MV at its hard limit. Once saturation occurs, the controller can do nothing
more, and the disturbance eventually drives the OV above its specified hard upper limit.
When the controller predicts that it is impossible to force the OV below this upper limit,
the run-time QP becomes infeasible.

Define the plant as a first-order SISO system with unity gain.

Plant = tf(1,[2 1]);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and
3 seconds, then ramps back down from 2 to 0 between 3 and 5 seconds.

4 Case-Study Examples

4-156

LoadDist = [0 0; 1 0; 3 2; 5 0; 7 0];

Design MPC Controller

Create an MPC object using the model of the test plant. The chosen control interval is
about one tenth of the dominant plant time constant.

Ts = 0.2;

Obj = mpc(Plant, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define hard constraints on plant input (MV) and output (OV). By default, all the MV
constraints are hard and OV constraints are soft.

Obj.MV.Min = -0.5;

Obj.MV.Max = 1;

Obj.OV.Min = -1;

Obj.OV.Max = 1;

Obj.OV.MinECR = 0; % change OV lower limit from soft to hard

Obj.OV.MaxECR = 0; % change OV upper limit from soft to hard

Generally, hard OV constraints are discouraged and are used here only to illustrate
how to detect an infeasible QP. Hard OV constraints make infeasibility likely, in which
case a backup control plan is essential. This example does not include a backup plan.
However, as shown in the simulation, the default action of freezing the single MV is the
best response in this simple case.

Simulate Using Simulink with Built-in QP Solver

To run this example, Simulink and the Optimization Toolbox are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('optim')

 disp('The Optimization Toolbox is required to run this example.')

 return

end

 Simulate MPC Controller with a Custom QP Solver

4-157

Build the control system in a Simulink model and enable the qp.status outport from
the controller block dialog. Its run-time value is displayed in a Simulink Scope block.

mdl = 'mpc_onlinemonitoring';

open_system(mdl);

Simulate the closed-loop response using the default Model Predictive Control Toolbox QP
solver.

open_system([mdl '/Controller Status']);

open_system([mdl '/Response']);

sim(mdl);

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Case-Study Examples

4-158

 Simulate MPC Controller with a Custom QP Solver

4-159

Explanation of the Closed-Loop Response

As shown in the response scope, at 1.4 seconds, the increasing disturbance causes the
MV to saturate at its lower bound of -0.5, which is the QP solution under these conditions
(because the controller is trying to hold the OV at its setpoint of 0).

4 Case-Study Examples

4-160

The OV continues to increase due to the ramp disturbance and, at 2.2 seconds, exceeds
the specified hard upper bound of 1.0. Since the QP is formulated in terms of predicted
outputs, the controller still predicts that it can bring OV back below 1.0 in the next move
and therefore the QP problem is still feasible.

Finally, at t = 3.2 seconds, the controller predicts that it can no longer move the OV
below 1.0 within the next control interval, and the QP problem becomes infeasible and
qp.status changes to -1 at this time.

After three seconds, the disturbance is decreasing. At 3.8 seconds, the QP becomes
feasible again. The OV is still well above its setpoint, however, and the MV remains
saturated until 5.4 seconds, when the QP solution is to increase the MV as shown. From
then on, the MV is not saturated, and the controller is able to drive the OV back to its
setpoint.

When the QP is feasible, the built-in solver finds the solution in three iterations or less.

Simulate with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, activate the
custom solver option by setting a property in the MPC controller.

Obj.Optimizer.CustomSolver = true;

You must also provide a MATLAB® function that satisfies all the following
requirements:

• Function name must be mpcCustomSolver.
• Function input and output arguments must comply (see the example below for

details).
• Function must be on the MATLAB path.

For this example, use the custom solver defined in mpcCustomSolver.txt, which uses
the quadprog command from the Optimization Toolbox as the custom QP solver:

Save the function in your working directory as a .m file.

src = which('mpcCustomSolver.txt');

dest = fullfile(pwd,'mpcCustomSolver.m');

copyfile(src,dest,'f');

Review the saved mpcCustomSolver.m file.

 Simulate MPC Controller with a Custom QP Solver

4-161

function [x, status] = mpcCustomSolver(H, f, A, b, x0)

% mpcCustomSolver allows user to specify a custom quadratic programming

% (QP) solver to solve the QP problem formulated by MPC controller. When

% the "mpcobj.Optimizer.CustomSolver" property is set true, instead of

% using the built-in QP solver, MPC controller will now use the customer QP

% solver defined in this function for simulations in MATLAB and Simulink.

%

% The MPC QP problem is defined as follows:

% Find an optimal solution, x, that minimizes the quadratic objective

% function, J = 0.5*x'*H*x + f'*x, subject to linear inequality

% constraints, A*x >= b.

%

% Inputs (provided by MPC controller at run-time):

% H: a n-by-n Hessian matrix, which is symmetric and positive definite.

% f: a n-by-1 column vector.

% A: a m-by-n matrix of inequality constraint coefficients.

% b: a m-by-1 vector of the right-hand side of inequality constraints.

% x0: a n-by-1 vector of the initial guess of the optimal solution.

%

% Outputs (fed back to MPC controller at run-time):

% x: must be a n-by-1 vector of optimal solution.

% status: must be an finite integer of:

% positive value: number of iterations used in computation

% 0: maximum number of iterations reached

% -1: QP is infeasible

% -2: Failed to find a solution due to other reasons

% Note that even if solver failed to find an optimal solution, "x" must be

% returned as a n-by-1 vector (i.e. set it to the initial guess x0)

%

% DO NOT CHANGE LINES ABOVE

% The following code is an example of how to implement the custom QP solver

% in this function. It requires Optimization Toolbox to run.

% Define QUADPROG options and turn off display of optimization results in

% Command window.

options = optimoptions('quadprog');

options.Display = 'none';

% By definition, constraints required by "quadprog" solver is defined as

% A*x <= b. However, in our MPC QP problem, the constraints are defined as

% A*x >= b. Therefore, we need to implement some conversion here:

A_custom = -A;

b_custom = -b;

% Compute the QP's optimal solution. Note that the default algorithm used

4 Case-Study Examples

4-162

% by "quadprog" ('interior-point-convex') ignores x0. "x0" is used here as

% an input argument for illustration only.

H = (H+H')/2; % ensure Hessian is symmetric

[x, ~, Flag, Output] = quadprog(H, f, A_custom, b_custom, [], [], [], [], x0, options);

% Converts the "flag" output to "status" required by the MPC controller.

switch Flag

 case 1

 status = Output.iterations;

 case 0

 status = 0;

 case -2

 status = -1;

 otherwise

 status = -2;

end

% Always return a non-empty x of the correct size. When the solver fails,

% one convenient solution is to set x to the initial guess.

if status <= 0

 x = x0;

end

Repeat the simulation.

set_param([mdl '/Controller Status'],'ymax','10');

sim(mdl)

 Simulate MPC Controller with a Custom QP Solver

4-163

4 Case-Study Examples

4-164

The plant input and output signals are identical to those obtained using the built-in
Model Predictive Control Toolbox solver, but the qp.status shows that quadprog does
not take the same number of iterations to find a solution. However, it does detect the
same infeasibility time period.

 Simulate MPC Controller with a Custom QP Solver

4-165

bdclose(mdl);

More About
• “QP Solver” on page 2-38

5

Adaptive MPC Design

• “Adaptive MPC” on page 5-2
• “Model Updating Strategy” on page 5-6
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 5-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 5-21
• “Time-Varying MPC” on page 5-34
• “Time-Varying MPC Control of a Time-Varying Plant” on page 5-39

5 Adaptive MPC Design

5-2

Adaptive MPC

In this section...

“When to Use Adaptive MPC” on page 5-2
“Plant Model” on page 5-3
“Nominal Operating Point” on page 5-4
“State Estimation” on page 5-4

When to Use Adaptive MPC

MPC control predicts future behavior using a linear-time-invariant (LTI) dynamic model.
In practice, such predictions are never exact, and a key tuning objective is to make MPC
insensitive to prediction errors. In many applications, this approach is sufficient for
robust controller performance.

If the plant is strongly nonlinear or its characteristics vary dramatically with time,
LTI prediction accuracy might degrade so much that MPC performance becomes
unacceptable. Adaptive MPC can address this degradation by adapting the prediction
model for changing operating conditions. As implemented in the Model Predictive Control
Toolbox software, adaptive MPC uses a fixed model structure, but allows the models
parameters to evolve with time. Ideally, whenever the controller requires a prediction
(at the beginning of each control interval) it uses a model appropriate for the current
conditions.

After you design an MPC controller for the average or most likely operating conditions
of your control system, you can implement an adaptive MPC controller based on that
design. For information about designing that initial controller, see “Controller Creation”.

At each control interval, the adaptive MPC controller updates the plant and model and
nominal conditions. Once updated, the model and conditions remain constant over the
prediction horizon. If you can predict how the plant and nominal conditions vary in
the future, you can use “Time-Varying MPC” on page 5-34 to specify a model that
changes over the prediction horizon.

An alternative option for controlling a nonlinear or time-varying plant is to use gain-
scheduled MPC control. See “Gain-Scheduled MPC” on page 7-2.)

 Adaptive MPC

5-3

Plant Model

The plant model used as the basis for adaptive MPC must be an LTI discrete-time,
state-space model. See “Basic Models” in the Control System Toolbox documentation or
“Linearization Basics” in the Simulink Control Design documentation for information
about creating and modifying such systems. The plant model structure is as follows:

x k Ax k B u k B v k B d k

y k Cx k D v k D d k

u v d

v d

+() = () + () + () + ()

() = () + () + ()

1

.

Here, the matrices A, Bu, Bv, Bd, C, Dv and Dd are the parameters that can vary with
time. The other variables in the expression are:

• k — Time index (current control interval).
• x — nx plant model states.
• u — nu manipulated inputs (MVs). These are the one or more inputs that are adjusted

by the MPC controller.
• v — nv measured disturbance inputs.
• d — nd unmeasured disturbance inputs.
• y — ny plant outputs, including nym measured and nyu unmeasured outputs. The

total number of outputs, ny = nym + nyu. Also, nym ≥ 1 (there is at least one measured
output).

Additional requirements for the plant model in adaptive MPC control are:

• Sample time (Ts) is a constant and identical to the MPC control interval.
• Time delay (if any) is absorbed as discrete states (see, e.g., the Control System

Toolbox absorbDelay command).
• nx, nu, ny, nd, nym, and nyu are all constants.
• Adaptive MPC prohibits direct feed-through from any manipulated variable to any

plant output. Thus, Du = 0 in the above model.
• The input and output signal configuration remains constant.

For more details about creation of plant models for MPC control, see “Plant
Specification”.

5 Adaptive MPC Design

5-4

Nominal Operating Point

A traditional MPC controller includes a nominal operating point at which the plant
model applies, such as the condition at which you linearize a nonlinear model to obtain
the LTI approximation. The Model.Nominal property of the controller contains this
information.

In adaptive MPC, as time evolves you should update the nominal operating point to be
consistent with the updated plant model.

You can write the plant model in terms of deviations from the nominal conditions:

x k x A x k x B u k u x

y k y C x k x D u k u

t t

t

+() = + () -() + () -() +

() = + () -() + () -

1 D

tt().

Here, the matrices A, B, C, and D are the parameter matrices to be updated. ut is the
combined plant input variable, comprising the u, v, and d variables defined above. The
nominal conditions to be updated are:

• x — nx nominal states
•

Dx — nx nominal state increments
• u

t
 — nut nominal inputs

• y — ny nominal outputs

State Estimation

By default, MPC uses a static Kalman filter (KF) to update its controller states, which
include the nxp plant model states, nd (≥ 0) disturbance model states, and nn (≥ 0)
measurement noise model states. This KF requires two gain matrices, L and M. By
default, the MPC controller calculates them during initialization. They depend upon
the plant, disturbance, and noise model parameters, and assumptions regarding the
stochastic noise signals driving the disturbance and noise models. For more details about
state estimation in traditional MPC, see “Controller State Estimation” on page 2-42.

Adaptive MPC uses a Kalman filter and adjusts the gains, L and M, at each control
interval to maintain consistency with the updated plant model. The result is a linear-
time-varying Kalman filter (LTVKF):

 Adaptive MPC

5-5

L A P C N C P C R

M P C C

k k k k m k
T

m k k k m k
T

k k k m k
T

m

= +() +()

=

- -

-

-

| , , | ,

| , ,

1 1

1

1 kk k k m k
T

k k k k k k
T

k k k m k
T

k
T

P C R

P A P A A P C N L

| ,

| | | ,

-

-

+ - -

+()
= - +()

1

1

1 1 1 ++ Q.

Here, Q, R, and N are constant covariance matrices defined as in MPC state estimation.
Ak and Cm,k are state-space parameter matrices for the entire controller state, defined
as for traditional MPC but with the portions affected by the plant model updated to
time k. The value Pk|k–1 is the state estimate error covariance matrix at time k based
on information available at time k–1. Finally, Lk and Mk are the updated KF gain
matrices. For details on the KF formulation used in traditional MPC, see “Controller
State Estimation” on page 2-42. By default, the initial condition, P0|–1, is the static KF
solution prior to any model updates.

The KF gain and the state error covariance matrix depend upon the model parameters
and the assumptions leading to the constant Q, R, and N matrices. If the plant model
is constant, the expressions for Lk and Mk converge to the equivalent static KF solution
used in traditional MPC.

The equations for the controller state evolution at time k are identical to the KF
formulation of traditional MPC described in “Controller State Estimation” on page 2-42,
but with the estimator gains and state space matrices updated to time k.

You have the option to update the controller state using a procedure external to the MPC
controller, and then supply the updated state to MPC at each control instant, k. In this
case, the MPC controller skips all KF and LTVKF calculations.

Related Examples
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 5-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 5-21

More About
• “Model Updating Strategy” on page 5-6
• “Controller State Estimation” on page 2-42

5 Adaptive MPC Design

5-6

Model Updating Strategy

In this section...

“Overview” on page 5-6
“Other Considerations” on page 5-6

Overview

Typically, to implement “Adaptive MPC” on page 5-2 control, you employ one of the
following model-updating strategies:

• Successive linearization — Given a mechanistic plant model, e.g., a set of
nonlinear ordinary differential and algebraic equations, derive its LTI approximation
at the current operating condition. For example, Simulink Control Design software
provides linearization tools for this purpose.

• Using a Linear Parameter Varying (LPV) model — Control System Toolbox
software provides a LPV System Simulink block that allows you to specify an array
of LTI models with scheduling parameters. You can perform batch linearization
offline to obtain an array of plant models at the desired operating points and then
use them in the LPV System block to provide model updating to the Adaptive MPC
Controller Simulink block.

• Online parameter estimation — Given an empirical model structure and initial
estimates of its parameters, use the available real-time plant measurements to
estimate the current model parameters. For example, the System Identification
Toolbox™ software provides real-time parameter estimation tools.

To implement “Time-Varying MPC” on page 5-34 control, you need to obtain LTI
plants for the future prediction horizon steps. In this case, you can use the successive
linearization and LPV model approaches as long as each model is a function of time

Other Considerations

There are several factors to keep in mind when designing and implementing an adaptive
MPC controller.

• Before attempting adaptive MPC, define and tune an MPC controller for the most
typical (nominal) operating condition. Make sure the system can tolerate some

 Model Updating Strategy

5-7

prediction error. Test this tolerance via simulations in which the MPC prediction
model differs from the plant. See “MPC Design”.

• An adaptive MPC controller requires more real-time computations than traditional
MPC. In addition to the state estimation calculation, you must also implement and
test a model-updating strategy, which might be computationally intensive.

• You must determine MPC tuning constants that provide robust performance over the
expected range of model parameters. See “Tuning Weights” on page 1-16.

• Model updating via online parameter estimation is most effective when parameter
variations occur gradually.

• When implementing adaptive MPC control, adapt only parameters defining the
Model.Plant property of the controller. The disturbance and noise models, if any,
remain constant.

See Also
Adaptive MPC Controller

Related Examples
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 5-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 5-21

More About
• “Adaptive MPC” on page 5-2

5 Adaptive MPC Design

5-8

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Successive Linearization

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A first principle nonlinear plant model is available and being linearized at each control
interval. The adaptive MPC controller then updates its internal predictive model with
the linearized plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the
process industry. A schematic of the CSTR system is:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-9

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature is the manipulated variable used by
the MPC controller to track the reference as well as reject the measured disturbance
arising from the inlet feed stream temperature . The inlet feed stream concentration,

, is assumed to be constant. The Simulink model mpc_cstr_plant implements the
nonlinear CSTR plant.

We also assume that direct measurements of concentrations are unavailable or
infrequent, which is the usual case in practice. Instead, we use a "soft sensor" to estimate
CA based on temperature measurements and the plant model.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from
one operating condition to another. A single MPC controller designed at a particular
operating condition cannot give satisfactory control performance over a wide operating
range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

5 Adaptive MPC Design

5-10

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another
based on a desired scheduling strategy. See “Gain Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant
model with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Linear Parameter Varying System” for more details. Use this approach
when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization as shown in this example. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an
LPV system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(R) is required to run this example.')

 return

end

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-11

To implement an adaptive MPC controller, first you need to design a MPC controller at
the initial operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';

op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;

op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;

op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;

op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating Point Search Report:

 Operating Report for the Model mpc_cstr_plant.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr_plant/CSTR/Integrator

 x: 311 dx: 8.12e-11 (0)

(2.) mpc_cstr_plant/CSTR/Integrator1

 x: 8.57 dx: -6.87e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi

5 Adaptive MPC Design

5-12

 u: 10

(2.) mpc_cstr_plant/Ti

 u: 298

(3.) mpc_cstr_plant/Tc

 u: 298

Outputs:

(1.) mpc_cstr_plant/T

 y: 311 [-Inf Inf]

(2.) mpc_cstr_plant/CA

 y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];

y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];

u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi because it is not used by MPC.

sys = sys(:,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;

plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive
mode, the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;

plant.InputGroup.ManipulatedVariables = 2;

plant.OutputGroup.Measured = 1;

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-13

plant.OutputGroup.Unmeasured = 2;

plant.InputName = {'Ti','Tc'};

plant.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Set nominal values in the controller

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];

Yscale = [50 10];

mpcobj.DV(1).ScaleFactor = Uscale(1);

mpcobj.MV(1).ScaleFactor = Uscale(2);

mpcobj.OV(1).ScaleFactor = Yscale(1);

mpcobj.OV(2).ScaleFactor = Yscale(2);

Let reactor temperature T float (i.e. with no setpoint tracking error penalty), because
the objective is to control reactor concentration CA and only one manipulated variable
(coolant temperature Tc) is available.

mpcobj.Weights.OV = [0 1];

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by degrees
per minute.

mpcobj.MV.RateMin = -2;

mpcobj.MV.RateMax = 2;

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

Open the Simulink model.

5 Adaptive MPC Design

5-14

mdl = 'ampc_cstr_linearization';

open_system(mdl);

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.
3 The "Successive Linearizer" block in a MATLAB Function block that linearizes a

first principle nonlinear CSTR plant and provides the linear plant model to the
"Adaptive MPC Controller" block at each control interval. Double click the block to
see the MATLAB code. You can use the block as a template to develop appropriate
linearizer for your own applications.

Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay,
it must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-15

• Tracking: reactor concentration CA setpoint transitions from original 8.57 (low
conversion rate) to 2 (high conversion rate) kgmol/m^3. During the transition, the
plant first becomes unstable then stable again (see the poles plot).

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to the MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])

open_system([mdl '/Temperature'])

open_system([mdl '/Pole'])

sim(mdl);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

5 Adaptive MPC Design

5-16

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-17

The tracking and regulating performance is very satisfactory. In an application to a real
reactor, however, model inaccuracies and unmeasured disturbances could cause poorer
tracking than shown here. Additional simulations could be used to study these effects.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than a non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdl1 = 'ampc_cstr_no_linearization';

open_system(mdl1);

open_system([mdl1 '/Concentration'])

open_system([mdl1 '/Temperature'])

sim(mdl1);

5 Adaptive MPC Design

5-18

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

5-19

5 Adaptive MPC Design

5-20

As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl)

bdclose(mdl1)

See Also
Adaptive MPC Controller

Related Examples
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 5-21

More About
• “Adaptive MPC” on page 5-2

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-21

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Online Model Estimation

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A discrete time ARX model is being identified online by the Recursive Polynomial Model
Estimator block at each control interval. The adaptive MPC controller uses it to update
internal plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the
process industry. A schematic of the CSTR system is:

5 Adaptive MPC Design

5-22

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the reactor temperature at its desired setpoint,
which changes over time when reactor transitions from low conversion rate to high
conversion rate. The coolant temperature is the manipulated variable used by the
MPC controller to track the reference as well as reject the measured disturbance arising
from the inlet feed stream temperature . The inlet feed stream concentration, ,
is assumed to be constant. The Simulink model mpc_cstr_plant implements the
nonlinear CSTR plant.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from
one operating condition to another. A single MPC controller designed at a particular
operating condition cannot give satisfactory control performance over a wide operating
range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-23

operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another
based on a desired scheduling strategy. See “Gain Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant
model with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Linear Parameter Varying System” for more details. Use this approach
when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed, as shown in this
example. Use this approach when linear plant model cannot be obtained from either an
LPV system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(R) is required to run this example.')

 return

end

To implement an adaptive MPC controller, first you need to design a MPC controller at
the initial operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

5 Adaptive MPC Design

5-24

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';

op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;

op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;

op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;

op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating Point Search Report:

 Operating Report for the Model mpc_cstr_plant.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr_plant/CSTR/Integrator

 x: 311 dx: 8.12e-11 (0)

(2.) mpc_cstr_plant/CSTR/Integrator1

 x: 8.57 dx: -6.87e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi

 u: 10

(2.) mpc_cstr_plant/Ti

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-25

 u: 298

(3.) mpc_cstr_plant/Tc

 u: 298

Outputs:

(1.) mpc_cstr_plant/T

 y: 311 [-Inf Inf]

(2.) mpc_cstr_plant/CA

 y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];

y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];

u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi and second output CA because they are not used by MPC.

sys = sys(1,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;

plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive
mode, the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;

plant.InputGroup.ManipulatedVariables = 2;

plant.OutputGroup.Measured = 1;

plant.InputName = {'Ti','Tc'};

plant.OutputName = {'T'};

5 Adaptive MPC Design

5-26

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set nominal values in the controller

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0(1), 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];

Yscale = 50;

mpcobj.DV.ScaleFactor = Uscale(1);

mpcobj.MV.ScaleFactor = Uscale(2);

mpcobj.OV.ScaleFactor = Yscale;

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by 2 degrees
per minute.

mpcobj.MV.RateMin = -2;

mpcobj.MV.RateMax = 2;

Reactor concentration is not directly controlled in this example. If reactor temperature
can be successfully controlled, the concentration will achieve desired performance
requirement due to the strongly coupling between the two variables.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

To run this example with online estimation, System Identification® is required.

if ~mpcchecktoolboxinstalled('ident')

 disp('System Identification(R) is required to run this example.')

 return

end

Open the Simulink model.

mdl = 'ampc_cstr_estimation';

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-27

open_system(mdl);

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.
3 The "Recursive Polynomial Model Estimator" block estimates a two-input (Ti and Tc)

and one-output (T) discrete time ARX model based on the measured temperatures.
The estimated model is then converted into state space form by the "Model Type
Converter" block and fed to the "Adaptive MPC Controller" block at each control
interval.

In this example, the initial plant model is used to initialize the online estimator with
parameter covariance matrix set to 1. The online estimation method is "Kalman Filter"
with noise covariance matrix set to 0.01. The online estimation result is sensitive to these
parameters and you can further adjust them to achieve better estimation result.

Both "Recursive Polynomial Model Estimator" and "Model Type Converter" are provided
by System Identification Toolbox. You can use the two blocks as a template to develop
appropriate online model estimation for your own applications.

The initial value of A(q) and B(q) variables are populated with the numerator and
denominator of the initial plant model.

5 Adaptive MPC Design

5-28

[num, den] = tfdata(plant);

Aq = den{1};

Bq = num;

Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay,
it must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

• Tracking: reactor temperature T setpoint transitions from original 311 K (low
conversion rate) to 377 K (high conversion rate) kgmol/m^3. During the transition,
the plant first becomes unstable then stable again (see the poles plot).

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])

open_system([mdl '/Temperature'])

sim(mdl);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-29

5 Adaptive MPC Design

5-30

The tracking and regulating performance is very satisfactory.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than a non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdl1 = 'ampc_cstr_no_estimation';

open_system(mdl1);

open_system([mdl1 '/Concentration'])

open_system([mdl1 '/Temperature'])

sim(mdl1);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-31

5 Adaptive MPC Design

5-32

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

5-33

As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl)

bdclose(mdl1)

See Also
Adaptive MPC Controller

Related Examples
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 5-8

More About
• “Adaptive MPC” on page 5-2

5 Adaptive MPC Design

5-34

Time-Varying MPC

In this section...

“When to Use Time-Varying MPC” on page 5-34
“Time-Varying Prediction Models” on page 5-34
“Time-Varying Nominal Conditions” on page 5-36
“State Estimation” on page 5-37

When to Use Time-Varying MPC

To adapt to changing operating conditions, adaptive MPC supports updating the
prediction model and its associated nominal conditions at each control interval. However,
the updated model and conditions remain constant over the prediction horizon. If you
can predict how the plant and nominal conditions vary in the future, you can use time-
varying MPC to specify a model that changes over the prediction horizon. Such a linear
time-varying (LTV) model is useful when controlling periodic systems or nonlinear
systems that are linearized around a time-varying nominal trajectory.

To use time-varying MPC, specify arrays for the Plant and Nominal input arguments
of mpcmoveAdaptive. For an example of time-varying MPC, see“Time-Varying MPC
Control of a Time-Varying Plant” on page 5-39.

Time-Varying Prediction Models

Consider the LTV prediction model

x k A k x k B k u k B k v k

y k C k x k D k v k

u v

v

+() = () () + () () + () ()

() = () () + () ()

1

where A, Bu, Bv, C, and D are discrete-time state-space matrices that can vary with time.
The other model parameters are:

• k — Current control interval time index
• x — Plant model states

 Time-Varying MPC

5-35

• u — Manipulated variables
• v — Measured disturbance inputs
• y — Measured and unmeasured plant outputs

Since time-varying MPC extends adaptive MPC, the plant model requirements are the
same; that is, for each model in the Plant array:

• Sample time (Ts) is constant and identical to the MPC controller sample time.
• Any time delays are absorbed as discrete states.
• The input and output signal configuration remains constant.
• There is no direct feed-through from the manipulated variables to the plant outputs.

For more information, see “Plant Model” on page 5-3.

The prediction of future trajectories for p steps into the future, where p is the prediction
horizon, is the same as for the adaptive MPC case:

y

y p

S x S u S

u

u p

x u u

1

0 1

0

1

1

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= () + -() +

()

-()

È

Î

Í
Í
Í

˘

˚

M M

D

D

˙̇
˙
˙

+

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

H

v

v p

v

0

M

However, for an LTV prediction model, the matrices Sx, Su1, Su, and Hv are:

5 Adaptive MPC Design

5-36

S

C A

C A A

C p A i

S

C

x

i

p

u

=

() ()
() () ()

() ()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

=

-
’

1 0

2 1 0

0

1

1

M

11 0

2 1 1 0

1

1

() ()
() () + () ()ÈÎ ˘̊

() ()() ()È
= +

-
’

B

C B A B

C p A i B k

u

u u

i k

p
u

M

ÎÎÍ
˘
˚̇

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
() ()

()

=

-
Âk

p

u

u u

S

S C B

C p A i

0

1

1

0 0 0

2 1 0 0

L

L

M

(()() ()È
ÎÍ

˘
˚̇

() -()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙

= +

-

=

- ’Â i k

p
uk

p
uB k C p B p

1

1

1

1
1L L

˙̇
˙
˙

=

() () ()
() () () () () ()

H

C B D

C A B C B D

C

v

v v

v v v

1 0 1 0 0

2 1 0 2 1 2 0

L

L

M M M M

pp A i B C p B p D p
i

p
v v v() ()() () () -() ()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙=

-
’ 1

1
0 1L L

where A i A k A k A k
i k

k
() () -() ()

=’
1

2

2 2 11@ … if k k
2 1

≥ , or I otherwise.

For more information on the prediction matrices for implicit MPC and adaptive MPC, see
“QP Matrices” on page 2-8.

Time-Varying Nominal Conditions

Linear models are often obtained by linearizing nonlinear dynamics around time-
varying nominal trajectories. For example, consider the following LTI model, obtained by
linearizing a nonlinear system at the time-varying nominal offsets xoff, uoff, voff, and yoff:

 Time-Varying MPC

5-37

x k x k A x k x k B u k u k

B v k v

off off u off

v

+() - +() = () - ()() + () - ()() +

() -

1 1

ooff off

off off v off

k x k

y k y k C x k x k D v k v

()() + ()

() - () = () - ()() + () -

D

kk()()

If we define

x x u u

v v y y

off off

off off

@ @

@ @

0 0

0 0

() ()

() ()

,

,

as standard nominal values that remain constant over the prediction horizon, we can
transform the LTI model into the following LTV model:

x k x A x k x B u k u B v k v B koff off u off v off v+() - = () -() + () -() + () -() + ()1

yy k y C x k x D v k v D koff off v off v() - = () -() + () -() + ()

where

B k x k A x x k B u u k

B v v

v off off off u off off

v off of

() () + - ()() + - ()() +

-

@ D

ff off

v off off v off off

k x k

D k C x x k D v v k y

()() + +()

() - ()() + - ()() -

D 1

@ ooff

If the original linearized model is already LTV, the same transformation applies.

State Estimation

As with adaptive MPC, time-varying MPC uses a time-varying Kalman filter based on
A(0), B(0), C(0), and D(0) from the initial prediction step; that is, the current time at
which the state is estimated. For more information, see “State Estimation” on page 5-4.

See Also
mpcmoveAdaptive

5 Adaptive MPC Design

5-38

More About
• “Adaptive MPC” on page 5-2
• “Optimization Problem” on page 2-2
• “Time-Varying MPC Control of a Time-Varying Plant” on page 5-39

 Time-Varying MPC Control of a Time-Varying Plant

5-39

Time-Varying MPC Control of a Time-Varying Plant
This example shows how the Model Predictive Control Toolbox™ can use time-varying
prediction models to achieve better performance when controlling a time-varying plant.

The following MPC controllers are compared:

1 Linear MPC controller based on a time-invariant average model
2 Linear MPC controller based on a time-invariant model, which is updated at each

time step.
3 Linear MPC controller based on a time-varying prediction model.

Time-Varying Linear Plant

In this example, the plant is a single-input-single-output 3rd order time-varying linear
system with poles, zeros and gain that vary periodically with time.

The plant poles move between being stable and unstable at run time, which leads to a
challenging control problem.

Generate an array of plant models at t = 0, 0.1, 0.2, ..., 10 seconds.

Models = tf;

ct = 1;

for t = 0:0.1:10

 Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);

 ct = ct + 1;

end

Convert the models to state-space format and discretize them with a sample time of 0.1
second.

Ts = 0.1;

Models = ss(c2d(Models,Ts));

MPC Controller Design

The control objective is to track a step change in the reference signal. First, design an
MPC controller for the average plant model. The controller sample time is 0.1 second.

sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % prediction model

5 Adaptive MPC Design

5-40

p = 3; % prediction horizon

m = 3; % control horizon

mpcobj = mpc(sys,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set hard constraints on the manipulated variable and specify tuning weights.

mpcobj.MV = struct('Min',-2,'Max',2);

mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);

Set the initial plant states to zero.

x0 = zeros(size(sys.B));

Closed-Loop Simulation with Implicit MPC

Run a closed-loop simulation to examine whether the designed implicit MPC controller
can achieve the control objective without updating the plant model used in prediction.

Set the simulation duration to 5 seconds.

Tstop = 5;

Use the mpcmove command in a loop to simulate the closed-loop response.

yyMPC = [];

uuMPC = [];

x = x0;

xmpc = mpcstate(mpcobj);

fprintf('Simulating MPC controller based on average LTI model.\n');

for ct = 1:(Tstop/Ts+1)

 % Get the real plant.

 real_plant = Models(:,:,ct);

 % Update and store the plant output.

 y = real_plant.C*x;

 yyMPC = [yyMPC,y];

 % Compute and store the MPC optimal move.

 u = mpcmove(mpcobj,xmpc,y,1);

 uuMPC = [uuMPC,u];

 % Update the plant state.

 x = real_plant.A*x + real_plant.B*u;

end

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Time-Varying MPC Control of a Time-Varying Plant

5-41

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Simulating MPC controller based on average LTI model.

Closed-Loop Simulation with Adaptive MPC

Run a second simulation to examine whether an adaptive MPC controller can achieve the
control objective.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.
Update the plant model for each control interval, and use the updated model to compute
the optimal control moves. The mpcmoveAdaptive command uses the same prediction
model across the prediction horizon.

yyAMPC = [];

uuAMPC = [];

x = x0;

xmpc = mpcstate(mpcobj);

nominal = mpcobj.Model.Nominal;

fprintf('Simulating MPC controller based on LTI model, updated at each time step t.\n');

for ct = 1:(Tstop/Ts+1)

 % Get the real plant.

 real_plant = Models(:,:,ct);

 % Update and store the plant output.

 y = real_plant.C*x;

 yyAMPC = [yyAMPC, y];

 % Compute and store the MPC optimal move.

 u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);

 uuAMPC = [uuAMPC,u];

 % Update the plant state.

 x = real_plant.A*x + real_plant.B*u;

end

Simulating MPC controller based on LTI model, updated at each time step t.

Closed-Loop Simulation with Time-Varying MPC

Run a third simulation to examine whether a time-varying MPC controller can achieve
the control objective.

The controller updates the prediction model at each control interval and also uses time-
varying models across the prediction horizon, which gives MPC controller the best
knowledge of plant behavior in the future.

5 Adaptive MPC Design

5-42

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.
Specify an array of plant models rather than a single model. The controller uses each
model in the array at a different prediction horizon step.

yyLTVMPC = [];

uuLTVMPC = [];

x = x0;

xmpc = mpcstate(mpcobj);

Nominals = repmat(nominal,3,1); % Nominal conditions are constant over the prediction horizon.

fprintf('Simulating MPC controller based on time-varying model, updated at each time step t.\n');

for ct = 1:(Tstop/Ts+1)

 % Get the real plant.

 real_plant = Models(:,:,ct);

 % Update and store the plant output.

 y = real_plant.C*x;

 yyLTVMPC = [yyLTVMPC, y];

 % Compute and store the MPC optimal move.

 u = mpcmoveAdaptive(mpcobj,xmpc,Models(:,:,ct:ct+p),Nominals,y,1);

 uuLTVMPC = [uuLTVMPC,u];

 % Update the plant state.

 x = real_plant.A*x + real_plant.B*u;

end

Simulating MPC controller based on time-varying model, updated at each time step t.

Performance Comparison of MPC Controllers

Compare the closed-loop responses.

t = 0:Ts:Tstop;

figure

subplot(2,1,1);

plot(t,yyMPC,'-.',t,yyAMPC,'--',t,yyLTVMPC);

grid

legend('Implicit MPC','Adaptive MPC','Time-Varying MPC','Location','SouthEast')

title('Plant Output');

subplot(2,1,2)

plot(t,uuMPC,'-.',t,uuAMPC,'--',t,uuLTVMPC)

grid

title('Control Moves');

 Time-Varying MPC Control of a Time-Varying Plant

5-43

Only the time-varying MPC controller is able to bring the plant output close enough to
the desired setpoint.

Closed-Loop Simulation of Time-Varying MPC in Simulink

To simulate time-varying MPC control in Simulink, pass the time-varying plant models
to model inport of the Adaptive MPC Controller block.

xmpc = mpcstate(mpcobj);

mdl = 'mpc_timevarying';

open_system(mdl);

5 Adaptive MPC Design

5-44

Run the simulation.

sim(mdl,Tstop);

fprintf('Simulating MPC controller based on LTV model in Simulink.\n');

Simulating MPC controller based on LTV model in Simulink.

Plot the MATLAB and Simulink time-varying simulation results.

figure

subplot(2,1,1)

plot(t,yyLTVMPC,t,ysim,'o');

grid

legend('mpcmoveAdaptive','Simulink','Location','SouthEast')

title('Plant Output');

subplot(2,1,2)

plot(t,uuLTVMPC,t,usim,'o')

grid

title('Control Moves');

 Time-Varying MPC Control of a Time-Varying Plant

5-45

The closed-loop responses in MATLAB and Simulink are identical.

bdclose(mdl);

See Also
mpcmoveAdaptive

More About
• “Time-Varying MPC” on page 5-34

6

Explicit MPC Design

• “Explicit MPC” on page 6-2
• “Design Workflow for Explicit MPC” on page 6-4
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-9
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-21
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on

page 6-30
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-42

6 Explicit MPC Design

6-2

Explicit MPC

A traditional model predictive controller solves a quadratic program (QP) at each control
interval to determine the optimal manipulated variable (MV) adjustments. These
adjustments are the solution of the implicit nonlinear function u=f(x).

The vector x contains the current controller state and other independent variables
affecting the QP solution, such as the current output reference values. The Model
Predictive Control Toolbox software imposes restrictions that force a unique QP solution.

Finding the optimal MV adjustments can be time consuming, and the required time can
vary significantly from one control interval to the next. In applications that require a
solution within a certain consistent time, which could be on the order of microseconds,
the implicit MPC approach might be unsuitable.

As shown in “Optimization Problem” on page 2-2, if no QP inequality constraints are
active for a given x vector, then the optimal MV adjustments become a linear function of
x:

u Fx G= + .

where, F and G are constants. Similarly, if x remains in a region where a fixed subset
of inequality constraints is active, the QP solution is also a linear function of x, but with
different F and G constants.

Explicit MPC uses offline computations to determine all polyhedral regions where
the optimal MV adjustments are a linear function of x, and the corresponding control-
law constants. When the controller operates in real time, the explicit MPC controller
performs the following steps at each control instant, k:

1 Estimate the controller state using available measurements, as in traditional MPC.
2 Form x(k) using the estimated state and the current values of the other independent

variables.
3 Identify the region in which x(k) resides.
4 Looks up the predetermined F and G constants for this region.
5 Evaluate the linear function u(k) = Fx(k) + G.

You can establish a tight upper bound for the time required in each step. If the number
of regions is not too large, the total computational time can be small. However, as the

 Explicit MPC

6-3

number of regions increases, the time required in step 3 dominates. Also, the memory
required to store all the linear control laws and polyhedral regions becomes excessive.
The number of regions characterizing u = f(x) depends primarily on the QP inequality
constraints that could be active at the solution. If an explicit MPC controller has many
constraints, and thus requires significant computational effort or memory, a traditional
(implicit) implementation may be preferable.

Related Examples
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-9
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-21
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

on page 6-30

More About
• “Design Workflow for Explicit MPC” on page 6-4

6 Explicit MPC Design

6-4

Design Workflow for Explicit MPC
In this section...

“Traditional (Implicit) MPC Design” on page 6-4
“Explicit MPC Generation” on page 6-5
“Explicit MPC Simplification” on page 6-6
“Implementation” on page 6-6
“Simulation” on page 6-7

To create an explicit MPC controller, you must first design a traditional (implicit)
MPC controller. You then generate an explicit MPC controller based on the traditional
controller design.

Traditional (Implicit) MPC Design

First design a traditional (implicit) MPC for your application and test it in simulations.
Key considerations are as follows:

• The Model Predictive Control Toolbox software currently supports the following as
independent variables for explicit MPC:

• nxc controller state variables (plant, disturbance, and measurement noise model
states).

• ny (≥ 1) output reference values, where ny is the number of plant output variables.
• nv (≥ 0) measured plant disturbance signals.

Thus, you must fix most MPC design parameters prior to determining an explicit
MPC. Fixed parameters include prediction models (plant, disturbance and
measurement noise), scale factors, horizons, penalty weights, manipulated variable
targets, and constraint bounds.

For information about designing a traditional MPC controller, see “Controller
Creation”.

For information about tuning traditional MPC controllers, see “Refinement”.
• Reference and measured disturbance previewing are not supported. At each control

interval, the current ny reference and nv measured disturbance signals apply for the
entire prediction horizon.

 Design Workflow for Explicit MPC

6-5

• To limit the number of regions needed by explicit MPC, include only essential
constraints.

• When including a constraint on a manipulated variable (MV) use a short control
horizon or MV blocking. See “Choosing Sample Time and Horizons” on page 1-6.

• Avoid constraints on plant outputs. If such a constraint is essential, consider
imposing it for selected prediction horizon steps rather than the entire prediction
horizon.

• Establish upper and lower bounds for each of the nx = nxc + ny + nv independent
variables. You might know some of these bounds a priori. However, you must run
simulations that record at least the nxc controller states as the system operates over
the range of expected conditions. It is very important that you not understimate
this range, because the explicit MPC control function is not defined for independent
variables outside the range.

For information about specifying bounds, see generateExplicitRange.

For information about simulating a traditional MPC controller, see “Simulation”.

Explicit MPC Generation

Given the constant MPC design parameters and the nx upper and lower bounds on the
control law’s independent variables, i.e.,

x x k xl u£ £() ,

the generateExplicitMPC command determines nr regions. Each of these regions is
defined by an inequality constraint and the corresponding control law constants:

H x k K i n

u k F x k G i n

i i r

i i r

() £ =

() = () + =

, ,

, , .

1

1

The Explicit MPC Controller object contains the constants Hi, Ki, Fi, and Gi for each
region. The Explicit MPC Controller object also holds the original (implicit) design and
independent variable bounds. Provided that x(k) stays within the specified bounds and
you retain all nr regions, the explicit MPC object should provide the same optimal MV
adjustments, u(k), as the equivalent implicit MPC object.

6 Explicit MPC Design

6-6

For details about explicit MPC, see [1]. For details about how the explicit MPC controller
is generated, see [2].

Explicit MPC Simplification

Even a relatively simple explicit MPC controller might need nr >> 100 to characterize the
QP solution completely. If the number of regions is large, consider the following:

• Visualize the solution using the plotSection command.
• Use the simplify command to reduce the number of regions. In some cases, this can

be done with no (or negligible) impact on control law optimality. For example, pairs
of adjacent regions might employ essentially the same Fi and Ki constants. If so, and
if the union of the two regions forms a convex set, they can be merged into a single
region.

Alternatively, you can eliminate relatively small regions or retain selected regions
only. If during operation the current x(k) is not contained in any of the retained
regions, the explicit MPC will return a suboptimal u(k), as follows:

u k F x k Gj j() = () + .

Here, j is the index of the region whose bounding constraint, Hjx(k) ≤ Kj, is least
violated.

Implementation

During operation, for a given x(k), the explicit MPC controller performs the following
steps:

1 Verifies that x(k) satisfies the specified bounds, xl ≤ x(k) ≤ xu. If not, the controller
returns an error status and sets u(k) = u(k–1).

2 Beginning with region i = 1, tests the regions one by one to determine whether x(k)
belongs. If Hix(k) ≤ Ki, then x(k) belongs to region i. If x(k) belongs to region i, then
the controller:

• Obtains Fi and Gi from memory, and computes u(k) = Fix(k) + Gi.
• Signals successful completion, by returning a status code and the index i.
• Returns without testing the remaining regions.

 Design Workflow for Explicit MPC

6-7

If x(k) does not belong to region i, the controller:

• Computes the violation term vi, which is the largest (positive) component of the
vector (Hix(k) – Ki).

• If vi is the minimum violation for this x(k), the controller sets j = i, and sets vmin =
vi.

• The controller then increments i and tests the next region.
3 If all regions have been tested and x(k) does not belong to any region (for example,

due to a numerical precision issue), the controller:

• Obtains Fj and Gj from memory, and computes u(k) = Fjx(k) + Gj.
• Sets status to indicate a suboptimal solution and returns.

Thus, the maximum computational time per control interval is that needed to test each
region, computing the violation term in each case, and then calculating the suboptimal
control adjustment.

Simulation

You can perform command-line simulations using the sim or mpcmoveExplicit
commands.

You can use the Explicit MPC Controller block to connect an explicit MPC to a
plant modeled in Simulink.

References

[1] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20,
2002.

[2] A. Bemporad, “A multi-parametric quadratic programming algorithm with polyhedral
computations based on nonnegative least squares,” 2014, Submitted for
publication.

See Also
Explicit MPC Controller | generateExplicitMPC | mpcmoveExplicit

6 Explicit MPC Design

6-8

Related Examples
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-9
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-21
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

on page 6-30

More About
• “Explicit MPC” on page 6-2

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-9

Explicit MPC Control of a Single-Input-Single-Output Plant

This example shows how to control a double integrator plant under input saturation in
Simulink® using explicit MPC.

See also MPCDOUBLEINT.

Define Plant Model

The linear open-loop dynamic model is a double integrator:

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1;

p = 10;

m = 3;

mpcobj = mpc(plant, Ts, p, m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify actuator saturation limits as MV constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional
MPC, you must specify range for each controller state, reference signal, manipulated
variable and measured disturbance so that the multi-parametric quadratic programming
problem is solved in the parameter space defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify range for each parameter afterwards.

6 Explicit MPC Design

6-10

range = generateExplicitRange(mpcobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify ranges for controller states

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least
as large as the practical range.

range.Reference.Min = -2;

range.Reference.Max = 2;

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

range.ManipulatedVariable.Min = -1.1;

range.ManipulatedVariable.Max = 1.1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);

display(mpcobjExplicit);

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-11

Regions found / unexplored: 19/ 0

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 19

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

Type 'mpcobjExplicit.Range' for the valid range of parameters.

Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Use simplify command with the "exact" method to join pairs of regions whose
corresponding gains are the same and whose union is a convex set. This practice
can reduce memory footprint of the Explicit MPC controller without sacrifice any
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');

display(mpcobjExplicitSimplified);

Regions to analyze: 15/ 15

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 15

Number of parameters: 4

Is solution simplified: Yes

State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.

Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.

Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

The number of piecewise affine region has been reduced.

6 Explicit MPC Design

6-12

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicitSimplified);

Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.

params.State.Index = [];

params.State.Value = [];

Fix other reference signals

params.Reference.Index = 1;

params.Reference.Value = 0;

Fix manipulated variables

params.ManipulatedVariable.Index = 1;

params.ManipulatedVariable.Value = 0;

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified, params);

axis([-4 4 -4 4]);

grid

xlabel('State #1');

ylabel('State #2');

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-13

Simulate Using MPCMOVE Command

Compare closed-loop simulation between tradition MPC (as referred as Implicit MPC)
and Explicit MPC using mpcmove and mpcmoveExplicit commands respectively.

Prepare to store the closed-loop MPC responses.

Tf = round(5/Ts);

YY = zeros(Tf,1);

YYExplicit = zeros(Tf,1);

UU = zeros(Tf,1);

UUExplicit = zeros(Tf,1);

Prepare the real plant used in simulation

6 Explicit MPC Design

6-14

sys = c2d(ss(plant),Ts);

xsys = [0;0];

xsysExplicit = xsys;

Use MPCSTATE object to specify the initial states for both controllers

xmpc = mpcstate(mpcobj);

xmpcExplicit = mpcstate(mpcobjExplicitSimplified);

Simulate closed-loop response in each iteration.

for t = 0:Tf

 % update plant measurement

 ysys = sys.C*xsys;

 ysysExplicit = sys.C*xsysExplicit;

 % compute traditional MPC action

 u = mpcmove(mpcobj,xmpc,ysys,1);

 % compute Explicit MPC action

 uExplicit = mpcmoveExplicit(mpcobjExplicit,xmpcExplicit,ysysExplicit,1);

 % store signals

 YY(t+1)=ysys;

 YYExplicit(t+1)=ysysExplicit;

 UU(t+1)=u;

 UUExplicit(t+1)=uExplicit;

 % update plant state

 xsys = sys.A*xsys + sys.B*u;

 xsysExplicit = sys.A*xsysExplicit + sys.B*uExplicit;

end

fprintf('\nDifference between traditional and Explicit MPC responses using MPCMOVE command is %g\n',norm(UU-UUExplicit)+norm(YY-YYExplicit));

Difference between traditional and Explicit MPC responses using MPCMOVE command is 4.08246e-13

Simulate Using SIM Command

Compare closed-loop simulation between tradition MPC and Explicit MPC using sim
commands respectively.

Tf = 5/Ts; % simulation iterations

[y1,t1,u1] = sim(mpcobj,Tf,1); % simulation with tradition MPC

[y2,t2,u2] = sim(mpcobjExplicitSimplified,Tf,1); % simulation with Explicit MPC

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-15

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The simulation results are identical.

fprintf('\nDifference between traditional and Explicit MPC responses using SIM command is %g\n',norm(u2-u1)+norm(y2-y1));

Difference between traditional and Explicit MPC responses using SIM command is 4.08204e-13

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

Simulate with traditional MPC controller in Simulink. Controller "mpcobj" is specified in
the block dialog.

mdl = 'mpc_doubleint';

open_system(mdl);

sim(mdl);

6 Explicit MPC Design

6-16

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-17

Simulate with Explicit MPC controller in Simulink. Controller
"mpcobjExplicitSimplified" is specified in the block dialog.

mdlExplicit = 'empc_doubleint';

open_system(mdlExplicit);

sim(mdlExplicit);

6 Explicit MPC Design

6-18

 Explicit MPC Control of a Single-Input-Single-Output Plant

6-19

6 Explicit MPC Design

6-20

The closed-loop responses are identical.

fprintf('\nDifference between traditional and Explicit MPC responses in Simulink is %g\n',norm(uExplicit-u)+norm(yExplicit-y));

Difference between traditional and Explicit MPC responses in Simulink is 3.98624e-13

bdclose(mdl)

bdclose(mdlExplicit)

Related Examples
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-21
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

on page 6-30

More About
• “Explicit MPC” on page 6-2

 Explicit MPC Control of an Aircraft with Unstable Poles

6-21

Explicit MPC Control of an Aircraft with Unstable Poles

This example shows how to control an unstable aircraft with saturating actuators using
Explicit MPC.

Reference:

[1] P. Kapasouris, M. Athans and G. Stein, "Design of feedback control systems for
unstable plants with saturating actuators", Proc. IFAC Symp. on Nonlinear Control
System Design, Pergamon Press, pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear
systems via predictive reference management", IEEE® Trans. Automatic Control, vol.
AC-42, no. 3, pp. 340-349, 1997.

See also MPCAIRCRAFT.

Define Aircraft Model

The linear open-loop dynamic model is as follows:

A = [-0.0151 -60.5651 0 -32.174;

 -0.0001 -1.3411 0.9929 0;

 0.00018 43.2541 -0.86939 0;

 0 0 1 0];

B = [-2.516 -13.136;

 -0.1689 -0.2514;

 -17.251 -1.5766;

 0 0];

C = [0 1 0 0;

 0 0 0 1];

D = [0 0;

 0 0];

plant = ss(A,B,C,D);

x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles, the attack and pitch
angles are measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

6 Explicit MPC Design

6-22

ans =

 -7.6636 + 0.0000i

 5.4530 + 0.0000i

 -0.0075 + 0.0556i

 -0.0075 - 0.0556i

Design MPC Controller

To obtain an Explicit MPC controller, you must first design a traditional MPC (also
referred as Implicit MPC) that is able to achieves your control objectives.

% *MV Constraints*

Both manipulated variables are constrained between +/- 25 degrees. Since the plant
inputs and outputs are of different orders of magnitude, you also use scale factors to
faciliate MPC tuning. Typical choices of scale factor are the upper/lower limit or the
operating range.

MV = struct('Min',{-25,-25},'Max',{25,25},'ScaleFactor',{50,50});

OV Constraints

Both plant outputs have constraints to limit undershoots at the first prediction horizon.
You also specify scale factors for outputs.

OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]},'Max',{[0.5;Inf],[100;Inf]},'ScaleFactor',{1,200});

Weights

The control task is to get zero offset for piecewise-constant references, while avoiding
instability due to input saturation. Because both MV and OV variables are already scaled
in MPC controller, MPC weights are dimensionless and applied to the scaled MV and OV
values. In this example, you penalize the two outputs equally with the same OV weights.

Weights = struct('MV',[0 0],'MVRate',[0.1 0.1],'OV',[10 10]);

Construct the traditional MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.05; % Sampling time

p = 10; % Prediction horizon

m = 2; % Control horizon

mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

 Explicit MPC Control of an Aircraft with Unstable Poles

6-23

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional
MPC, you must specify range for each controller state, reference signal, manipulated
variable and measured disturbance so that the multi-parametric quadratic programming
problem is solved in the parameter space defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify ranges for controller states

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = -10000;

range.State.Max(:) = 10000;

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least
as large as the practical range.

range.Reference.Min = [-1;-11];

range.Reference.Max = [1;11];

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

6 Explicit MPC Design

6-24

range.ManipulatedVariable.Min = [MV(1).Min; MV(2).Min] - 1;

range.ManipulatedVariable.Max = [MV(1).Max; MV(2).Max] + 1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);

display(mpcobjExplicit);

Regions found / unexplored: 483/ 0

Explicit MPC Controller

Controller sample time: 0.05 (seconds)

Polyhedral regions: 483

Number of parameters: 10

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

Type 'mpcobjExplicit.Range' for the valid range of parameters.

Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Use simplify command with the "exact" method to join pairs of regions whose
corresponding gains are the same and whose union is a convex set. This practice
can reduce memory footprint of the Explicit MPC controller without sacrifice any
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');

display(mpcobjExplicitSimplified);

Regions to analyze: 471/ 471

Explicit MPC Controller

Controller sample time: 0.05 (seconds)

 Explicit MPC Control of an Aircraft with Unstable Poles

6-25

Polyhedral regions: 471

Number of parameters: 10

Is solution simplified: Yes

State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.

Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.

Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

The number of piecewise affine region has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicitSimplified);

Specify parameters for a 2-D plot

In this example, you plot the pitch angle (the 4th state variable) vs. its reference (the 2nd
reference signal). All the other parameters must be fixed at a value within its range.

Fix other state variables

params.State.Index = [1 2 3 5 6];

params.State.Value = [0 0 0 0 0];

Fix other reference signals

params.Reference.Index = 1;

params.Reference.Value = 0;

Fix manipulated variables

params.ManipulatedVariable.Index = [1 2];

params.ManipulatedVariable.Value = [0 0];

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

6 Explicit MPC Design

6-26

plotSection(mpcobjExplicitSimplified, params);

axis([-10 10 -10 10]);

grid;

xlabel('Pitch angle (x_4)');

ylabel('Reference on pitch angle (r_2)');

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

 Explicit MPC Control of an Aircraft with Unstable Poles

6-27

Simulate closed-loop control of the linear plant model in Simulink, using the Explicit
MPC Controller block. Controller "mpcobjExplicitSimplified" is specified in the block
dialog.

mdl = 'empc_aircraft';

open_system(mdl)

sim(mdl)

6 Explicit MPC Design

6-28

 Explicit MPC Control of an Aircraft with Unstable Poles

6-29

The closed-loop response is identical to the traditional MPC controller designed in the
"mpcaircraft" example.

bdclose(mdl)

Related Examples
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-9
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

on page 6-30

More About
• “Explicit MPC” on page 6-2

6 Explicit MPC Design

6-30

Explicit MPC Control of DC Servomotor with Constraint on
Unmeasured Output

This example shows how to use Explicit MPC to control DC servomechanism under
voltage and shaft torque constraints.

Reference

[1] A. Bemporad and E. Mosca, ''Fulfilling hard constraints in uncertain linear systems
by reference managing,'' Automatica, vol. 34, no. 4, pp. 451-461, 1998.

See also MPCMOTOR.

Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in "plant". Variable "tau" is the maximum
admissible torque to be used as an output constraint.

[plant, tau] = mpcmotormodel;

Design MPC Controller

Specify input and output signal types for the MPC controller. The second output, torque,
is unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

MV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs
and outputs are of different orders of magnitude, you also use scale factors to faciliate
MPC tuning. Typical choices of scale factor are the upper/lower limit or the operating
range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

OV Constraints

Torque constraints are only imposed during the first three prediction steps to limit the
complexity of the explicit MPC design.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-31

OV = struct('Min',{Inf, [-tau;-tau;-tau;-Inf]},'Max',{Inf, [tau;tau;tau;Inf]},'ScaleFactor',{2*pi, 2*tau});

Weights

The control task is to get zero tracking offset for the angular position. Since you only
have one manipulated variable, the shaft torque is allowed to float within its constraint
by setting its weight to zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.1; % Sampling time

p = 10; % Prediction horizon

m = 2; % Control horizon

mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional
MPC, you must specify the range for each controller state, reference signal, manipulated
variable and measured disturbance so that the multi-parametric quadratic programming
problem is solved in the parameter sets defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify the range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify ranges for controller states

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the

6 Explicit MPC Design

6-32

state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = -1000;

range.State.Max(:) = 1000;

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least
as large as the practical range. Note that the range for torque reference is fixed at 0
because it has zero weight.

range.Reference.Min = [-5;0];

range.Reference.Max = [5;0];

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

range.ManipulatedVariable.Min = MV.Min - 1;

range.ManipulatedVariable.Max = MV.Max + 1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);

display(mpcobjExplicit);

Regions found / unexplored: 75/ 0

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 75

Number of parameters: 6

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-33

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

Type 'mpcobjExplicit.Range' for the valid range of parameters.

Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicit);

Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.

Fix other state variables

params.State.Index = [3 4];

params.State.Value = [0 0];

Fix reference signals

params.Reference.Index = [1 2];

params.Reference.Value = [pi 0];

Fix manipulated variables

params.ManipulatedVariable.Index = 1;

params.ManipulatedVariable.Value = 0;

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

6 Explicit MPC Design

6-34

plotSection(mpcobjExplicit, params);

axis([-.3 .3 -2 2]);

grid

title('Section of partition [x3(t)=0, x4(t)=0, u(t-1)=0, r(t)=pi]')

xlabel('x1(t)');

ylabel('x2(t)');

Simulate Using SIM Command

Compare closed-loop simulation between traditional MPC (as referred as Implicit MPC)
and Explicit MPC

Tstop = 8; % seconds

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-35

Tf = round(Tstop/Ts); % simulation iterations

r = [pi 0]; % reference signal

[y1,t1,u1] = sim(mpcobj,Tf,r); % simulation with traditional MPC

[y2,t2,u2] = sim(mpcobjExplicit,Tf,r); % simulation with Explicit MPC

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The simulation results are identical.

fprintf('SIM command: Difference between QP-based and Explicit MPC trajectories = %g\n',norm(u2-u1)+norm(y2-y1));

SIM command: Difference between QP-based and Explicit MPC trajectories = 4.82041e-12

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

Simulate closed-loop control of the linear plant model in Simulink, using the Explicit
MPC Controller block. Controller "mpcobjExplicit" is specified in the block dialog.

mdl = 'empc_motor';

open_system(mdl)

sim(mdl);

6 Explicit MPC Design

6-36

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-37

6 Explicit MPC Design

6-38

The closed-loop response is identical to the traditional MPC controller designed in the
"mpcmotor" example.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-39

Control Using Sub-optimal Explicit MPC

To reduce the memory footprint, you can use simplify command to reduce the number
of piecewise affine solution regions. For example, you can remove regions whose
Chebychev radius is smaller than .08. However, the price you pay is that the controler
performance now becomes sub-optimal.

Use simplify command to generate Explicit MPC with sub-optimal solutions.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'radius', 0.08);

disp(mpcobjExplicitSimplified);

Regions to analyze: 75/ 75 --> 37 regions deleted.

 explicitMPC with properties:

 MPC: [1x1 mpc]

 Range: [1x1 struct]

 OptimizationOptions: [1x1 struct]

 PiecewiseAffineSolution: [1x38 struct]

 IsSimplified: 1

The number of piecewise affine regions has been reduced.

Compare closed-loop simulation between sub-optimal Explicit MPC and Explicit MPC.

[y3,t3,u3] = sim(mpcobjExplicitSimplified, Tf, r);

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The simulation results are not the same.

fprintf('SIM command: Difference between exact and suboptimal MPC trajectories = %g\n',norm(u3-u2)+norm(y3-y2));

SIM command: Difference between exact and suboptimal MPC trajectories = 439.399

Plot results.

figure;

6 Explicit MPC Design

6-40

subplot(3,1,1)

plot(t1,y1(:,1),t3,y3(:,1),'o');

grid

title('Angle (rad)')

legend('Explicit','sub-optimal Explicit')

subplot(3,1,2)

plot(t1,y1(:,2),t3,y3(:,2),'o');

grid

title('Torque (Nm)')

legend('Explicit','sub-optimal Explicit')

subplot(3,1,3)

plot(t1,u1,t3,u3,'o');

grid

title('Voltage (V)')

legend('Explicit','sub-optimal Explicit')

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

6-41

The simulation result with the sub-optimal Explicit MPC is slightly worse.

bdclose(mdl)

Related Examples
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 6-9
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 6-21

More About
• “Explicit MPC” on page 6-2

6 Explicit MPC Design

6-42

Explicit MPC Control of an Inverted Pendulum on a Cart

This example uses an explicit model predictive controller (explicit MPC) to control an
inverted pendulum on a cart.

Product Requirement

This example requires Simulink Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(R) is required to run this example.')

 return

end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-43

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';

load_system(mdlPlant);

open_system([mdlPlant '/Pendulum and Cart System'],'force');

6 Explicit MPC Design

6-44

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-45

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the
cart should return to its original position with a maximum displacement of 1. The
pendulum should also return to the upright position with a peak angle displacement
of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

• One manipulated Variable: variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartExplicitMPC';

open_system(mdlMPC);

6 Explicit MPC Design

6-46

Although cart velocity x_dot and pendulum angular velocity theta_dot are available
from the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for
prediction, linearize the Simulink plant model at the inital operating point.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');

io(2) = linio([mdlPlant '/F'],1,'openinput');

io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');

io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-47

opspec = operspec(mdlPlant);

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;

opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;

opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);

op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);

plant.InputName = {'dF';'F'};

plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 0

 -11.9115

 -3.2138

 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant);

Traditional (Implicit) MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example,
dF is specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

6 Explicit MPC Design

6-48

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarily, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;

PredictionHorizon = 50;

ControlHorizon = 5;

mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force we can apply to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj.MV.Min = -200;

mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by by
multiplying the default disturbance model gains by a factor of 10.

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-49

Update the input disturbance model.

disturbance_model = getindist(mpcobj);

setindist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #1 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);

setoutdist(mpcobj,'model',disturbance_model*10);

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Explicit MPC Generation

A simple implicit MPC controller, without the need for constraint or weight changes
at run-time, can be converted into an explicit MPC controller with the same control
performance. The key benefit of using Explicit MPC is that it avoids real-time
optimization, and as a result, is suitable for industrial applications that demand fast
sample time. The tradeoff is that explicit MPC has a high memory footprint because
optimal solutions for all feasible regions are pre-computed offline and stored for run-time
access.

To generate an explicit MPC controller from an implicit MPC controlelr, define the
ranges for parameters such as plant states, references, and manipulated variables. These
ranges should cover the operating space for which the plant and controller are designed,
to your best knowledge.

range = generateExplicitRange(mpcobj);

range.State.Min(:) = -20; % largest range comes from cart position x

range.State.Max(:) = 20;

range.Reference.Min = -20; % largest range comes from cart position x

range.Reference.Max = 20;

range.ManipulatedVariable.Min = -200;

6 Explicit MPC Design

6-50

range.ManipulatedVariable.Max = 200;

-->Converting model to discrete time.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Generate an explicit MPC controller for the defined ranges.

mpcobjExplicit = generateExplicitMPC(mpcobj,range);

Regions found / unexplored: 92/ 0

To use the explicit MPC controller in Simulink, specify it in the Explicit MPC Controller
block dialog in your Simulink model.

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);

sim(mdlMPC);

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-51

6 Explicit MPC Design

6-52

In the nonlinear simulation, all the control objectives are successfully achieved.

Comparing with the results from “Control of an Inverted Pendulum on a Cart”, the
implicit and explicit MPC controllers deliver identical performance as expected.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in

 Explicit MPC Control of an Inverted Pendulum on a Cart

6-53

the prediction of plant behavior exceed what the built-in MPC robustness can handle,
and the controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;

mpcobj.OV(2).Max = pi/2;

mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

bdclose(mdlMPC);

More About
• “Explicit MPC” on page 6-2
• “Control of an Inverted Pendulum on a Cart” on page 4-144
• “Gain Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 7-39

7

Gain Scheduling MPC Design

• “Gain-Scheduled MPC” on page 7-2
• “Design Workflow for Gain Scheduling” on page 7-3
• “Gain Scheduled MPC Control of Nonlinear Chemical Reactor” on page 7-5
• “Gain Scheduled MPC Control of Mass-Spring System” on page 7-28
• “Gain Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 7-39

7 Gain Scheduling MPC Design

7-2

Gain-Scheduled MPC

The Multiple MPC Controllers block for Simulink allows you to switch between
a defined set of MPC Controllers. You might need this feature if the plant operating
characteristics change in a predictable way, and the change is such that a single
prediction model cannot provide adequate accuracy. This approach is comparable to the
use of gain scheduling in conventional feedback control.

The individual MPC controllers coordinate to make switching from one to another
bumpless, avoiding a sudden change in the manipulated variables when the switch
occurs.

You can perform command-line simulations using the mpcmoveMultiple command.

More About
• “Design Workflow for Gain Scheduling” on page 7-3
• “Relationship of Multiple MPC Controllers to MPC Controller Block” on page 3-3

 Design Workflow for Gain Scheduling

7-3

Design Workflow for Gain Scheduling

In this section...

“General Design Steps” on page 7-3
“Tips” on page 7-3

General Design Steps

• Define and tune a nominal MPC controller for the most likely (or average) operating
conditions. (See “MPC Design”.)

• Use simulations to determine an operating condition at which the nominal controller
loses robustness. See “Simulation”.

• Identify a measurement (or combination of measurements) signaling when the
nominal controller should be replaced.

• Determine a plant prediction model to be used at the new condition. Its input and
output variables must be the same as in the nominal case.

• Define a new MPC controller based on the new prediction model. Use the nominal
controller settings as a starting point, and test and retune controller settings if
necessary.

• If two controllers are inadequate to provide robustness over the full operational range,
consider adding another. If it appears that you need more than three controllers to
provide robustness over the full range, consider using adaptive MPC instead. See
“Adaptive MPC Design”.

• In your Simulink model, configure the Multiple MPC Controllers block. Specify
the set of MPC controllers to be used, and specify the switching criterion.

• Test in closed-loop simulation over the full operating range to verify robustness and
bumpless switching.

Tips

• Recommended MPC start-up practice is a warm-up period in which the plant operates
under manual control while the controller initializes its state estimate. This typically
requires 10-20 control intervals. A warm-up is especially important for the Multiple
MPC Controllers block. Otherwise, switching between MPC controllers might upset
the manipulated variables.

7 Gain Scheduling MPC Design

7-4

• If you select the Multiple MPC Controllers block’s custom state estimation
option, all MPC controllers in the set must have the same state dimension. This
places implicit restrictions on plant and disturbance models.

See Also
mpcmoveMultiple | Multiple MPC Controllers

Related Examples
• “Schedule Controllers at Multiple Operating Points”
• “Coordinate Multiple Controllers at Different Operating Points” on page 4-64
• “Gain Scheduled MPC Control of Nonlinear Chemical Reactor” on page 7-5
• “Gain Scheduled MPC Control of Mass-Spring System” on page 7-28

More About
• “Relationship of Multiple MPC Controllers to MPC Controller Block” on page 3-3

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-5

Gain Scheduled MPC Control of Nonlinear Chemical Reactor
This example shows how to use multiple MPC controllers to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

Multiple MPC Controllers are designed at different operating conditions and then
implemented with the Multiple MPC Controller block in Simulink. At run time, a
scheduling signal is used to switch controller from one to another.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the
process industry. A schematic of the CSTR system is:

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be

7 Gain Scheduling MPC Design

7-6

perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired
setpoint, which changes over time when reactor transitions from low conversion rate
to high conversion rate. The coolant temperature is the manipulated variable used
by the MPC controller to track the reference. The inlet feed stream concentration
and temperature are assumed to be constant. The Simulink model mpc_cstr_plant
implements the nonlinear CSTR plant.

About Gain Scheduled Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from
one operating condition to another. A single MPC controller designed at a particular
operating condition cannot give satisfactory control performance over a wide operating
range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-7

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy, as discussed in this example. Use this approach when
the plant models have different orders or time delays.

(2) Design one MPC controller offline at a nominal operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant
model with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Linear Parameter Varying System” for more details. Use this approach
when all the plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an
LPV system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To run this example, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(R) is required to run this example.')

 return

end

First, a linear plant model is obtained at the initial operating condition, CAi is 10
kgmol/m^3, Ti and Tc are 298.15 K. Functions from Simulink Control Design such as
"operspec", "findop", "linearize", are used to generate the linear state space system from
the Simulink model.

7 Gain Scheduling MPC Design

7-8

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';

op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;

op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;

op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;

op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

% Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];

y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];

u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

 Operating Point Search Report:

 Operating Report for the Model mpc_cstr_plant.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr_plant/CSTR/Integrator

 x: 311 dx: 8.12e-11 (0)

(2.) mpc_cstr_plant/CSTR/Integrator1

 x: 8.57 dx: -6.87e-12 (0)

Inputs:

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-9

(1.) mpc_cstr_plant/CAi

 u: 10

(2.) mpc_cstr_plant/Ti

 u: 298

(3.) mpc_cstr_plant/Tc

 u: 298

Outputs:

(1.) mpc_cstr_plant/T

 y: 311 [-Inf Inf]

(2.) mpc_cstr_plant/CA

 y: 8.57 [-Inf Inf]

Obtain linear model at the initial condition.

plant = linearize(plant_mdl, op_point);

Verify that the linear model is open-loop stable at this condition.

eig(plant)

ans =

 -0.5223

 -0.8952

Design MPC Controller for Initial Operating Condition

You design an MPC at the initial operating condition.

Ts = 0.5;

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant.InputGroup.UnmeasuredDisturbances = [1 2];

plant.InputGroup.ManipulatedVariables = 3;

plant.OutputGroup.Measured = [1 2];

plant.InputName = {'CAi','Ti','Tc'};

7 Gain Scheduling MPC Design

7-10

plant.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Set nominal values in the controller. Note that nominal values for unmeasured
disturbance must be zero.

mpcobj.Model.Nominal = struct('X', x0, 'U', [0;0;u0(3)], 'Y', y0, 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [10;30;50];

Yscale = [50;10];

mpcobj.DV(1).ScaleFactor = Uscale(1);

mpcobj.DV(2).ScaleFactor = Uscale(2);

mpcobj.MV.ScaleFactor = Uscale(3);

mpcobj.OV(1).ScaleFactor = Yscale(1);

mpcobj.OV(2).ScaleFactor = Yscale(2);

The goal will be to track a specified transition in the reactor concentration. The reactor
temperature will be measured and used in state estimation but the controller will not
attempt to regulate it directly. It will vary as needed to regulate the concentration. Thus,
set its MPC weight to zero.

mpcobj.Weights.OV = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes
integrated white noise with unit magnitude at these inputs when configuring the state
estimator. Try increasing the state estimator signal-to-noise by a factor of 10 to improve
disturbance rejection performance.

D = ss(getindist(mpcobj));

D.b = eye(2)*10;

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-11

setindist(mpcobj, 'model', D);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #1 is integrated white noise.

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

All other MPC parameters are at their default values.

Test the Controller With a Step Disturbance in Feed Concentration

"mpc_cstr_single" contains a Simulink® model with CSTR and MPC Controller blocks in
a feedback configuration.

mpc_mdl = 'mpc_cstr_single';

open_system(mpc_mdl)

7 Gain Scheduling MPC Design

7-12

Note that the MPC Controller block is configured to look ahead (preview) the setpoint
changes in the future, i.e., anticipating the setpoint transition. This generally improves
setpoint tracking.

Define a constant setpoint for the output.

CSTR_Setpoints.time = [0; 60];

CSTR_Setpoints.signals.values = [y0 y0]';

Test the response to a 5% increase in feed concentration.

set_param([mpc_mdl '/Feed Concentration'], 'Value', '10.5');

Set plot scales and simulate the response.

open_system([mpc_mdl '/Measurements'])

open_system([mpc_mdl '/Coolant Temperature'])

set_param([mpc_mdl '/Measurements'], 'Ymin', '305~8', 'Ymax', '320~9')

set_param([mpc_mdl '/Coolant Temperature'], 'Ymin', '295', 'Ymax', '305')

sim(mpc_mdl, 10);

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-13

7 Gain Scheduling MPC Design

7-14

The closed-loop response is satisfactory.

Simulate Designed MPC Controller Using Full Transition

First, define the desired setpoint transition. After a 10-minute warm-up period, ramp the
concentration setpoint downward at a rate of 0.25 per minute until it reaches 2.0 kmol/
m^3.

CSTR_Setpoints.time = [0 10 11:39]';

CSTR_Setpoints.signals.values = [y0(1)*ones(31,1),[y0(2);y0(2);(y0(2):-0.25:2)';2;2]];

Remove the 5% increase in feed concentration used previously.

set_param([mpc_mdl '/Feed Concentration'], 'Value', '10')

Set plot scales and simulate the response.

set_param([mpc_mdl '/Measurements'], 'Ymin', '300~0', 'Ymax', '400~10')

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-15

set_param([mpc_mdl '/Coolant Temperature'], 'Ymin', '240', 'Ymax', '360')

7 Gain Scheduling MPC Design

7-16

Simulate model.

sim(mpc_mdl, 60)

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-17

7 Gain Scheduling MPC Design

7-18

The closed-loop response is unacceptable. Performance along the full transition can be
improved if other MPC controllers are designed at different operating conditions along
the transition path. In the next two section, two additional MPC controllers are design at
intermediate and final transition stages respectively.

Design MPC Controller for Intermediate Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;

op.Inputs(1).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-19

op.Inputs(2).Known = true;

Reactor concentration is known

op.Outputs(2).y = 5.5;

op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point, op_report] = findop(plant_mdl,op);

% Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];

y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];

u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

 Operating Point Search Report:

 Operating Report for the Model mpc_cstr_plant.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr_plant/CSTR/Integrator

 x: 339 dx: 3.42e-08 (0)

(2.) mpc_cstr_plant/CSTR/Integrator1

 x: 5.5 dx: -2.87e-09 (0)

Inputs:

(1.) mpc_cstr_plant/CAi

 u: 10

(2.) mpc_cstr_plant/Ti

 u: 298

(3.) mpc_cstr_plant/Tc

 u: 298 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T

 y: 339 [-Inf Inf]

(2.) mpc_cstr_plant/CA

 y: 5.5 (5.5)

7 Gain Scheduling MPC Design

7-20

Obtain linear model at the initial condition.

plant_intermediate = linearize(plant_mdl, op_point);

Verify that the linear model is open-loop unstable at this condition.

eig(plant_intermediate)

ans =

 0.4941

 -0.8357

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant_intermediate.InputGroup.UnmeasuredDisturbances = [1 2];

plant_intermediate.InputGroup.ManipulatedVariables = 3;

plant_intermediate.OutputGroup.Measured = [1 2];

plant_intermediate.InputName = {'CAi','Ti','Tc'};

plant_intermediate.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj_intermediate = mpc(plant_intermediate, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Set nominal values, scale factors and weights in the controller

mpcobj_intermediate.Model.Nominal = struct('X', x0, 'U', [0;0;u0(3)], 'Y', y0, 'DX', [0 0]);

Uscale = [10;30;50];

Yscale = [50;10];

mpcobj_intermediate.DV(1).ScaleFactor = Uscale(1);

mpcobj_intermediate.DV(2).ScaleFactor = Uscale(2);

mpcobj_intermediate.MV.ScaleFactor = Uscale(3);

mpcobj_intermediate.OV(1).ScaleFactor = Yscale(1);

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-21

mpcobj_intermediate.OV(2).ScaleFactor = Yscale(2);

mpcobj_intermediate.Weights.OV = [0 1];

D = ss(getindist(mpcobj_intermediate));

D.b = eye(2)*10;

setindist(mpcobj_intermediate, 'model', D);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #1 is integrated white noise.

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Design MPC Controller for Final Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;

op.Inputs(1).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;

op.Inputs(2).Known = true;

Reactor concentration is known

op.Outputs(2).y = 2;

op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point, op_report] = findop(plant_mdl,op);

% Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];

y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];

u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

 Operating Point Search Report:

7 Gain Scheduling MPC Design

7-22

 Operating Report for the Model mpc_cstr_plant.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr_plant/CSTR/Integrator

 x: 373 dx: 5.57e-11 (0)

(2.) mpc_cstr_plant/CSTR/Integrator1

 x: 2 dx: -4.6e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi

 u: 10

(2.) mpc_cstr_plant/Ti

 u: 298

(3.) mpc_cstr_plant/Tc

 u: 305 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T

 y: 373 [-Inf Inf]

(2.) mpc_cstr_plant/CA

 y: 2 (2)

Obtain linear model at the initial condition.

plant_final = linearize(plant_mdl, op_point);

Verify that the linear model is again open-loop stable at this condition.

eig(plant_final)

ans =

 -1.1077 + 1.0901i

 -1.1077 - 1.0901i

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-23

plant_final.InputGroup.UnmeasuredDisturbances = [1 2];

plant_final.InputGroup.ManipulatedVariables = 3;

plant_final.OutputGroup.Measured = [1 2];

plant_final.InputName = {'CAi','Ti','Tc'};

plant_final.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj_final = mpc(plant_final, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Set nominal values, scale factors and weights in the controller

mpcobj_final.Model.Nominal = struct('X', x0, 'U', [0;0;u0(3)], 'Y', y0, 'DX', [0 0]);

Uscale = [10;30;50];

Yscale = [50;10];

mpcobj_final.DV(1).ScaleFactor = Uscale(1);

mpcobj_final.DV(2).ScaleFactor = Uscale(2);

mpcobj_final.MV.ScaleFactor = Uscale(3);

mpcobj_final.OV(1).ScaleFactor = Yscale(1);

mpcobj_final.OV(2).ScaleFactor = Yscale(2);

mpcobj_final.Weights.OV = [0 1];

D = ss(getindist(mpcobj_final));

D.b = eye(2)*10;

setindist(mpcobj_final, 'model', D);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #1 is integrated white noise.

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Control the CSTR Plant With the Multiple MPC Controllers Block

The following model uses the Multiple MPC Controllers block to implement three MPC
controllers across the operating range.

7 Gain Scheduling MPC Design

7-24

mmpc_mdl = 'mpc_cstr_multiple';

open_system(mmpc_mdl);

Note that it has been configured to use the three controllers in a sequence: mpcobj,
mpcobj_intermediate and mpcobj_final.

open_system([mmpc_mdl '/Multiple MPC Controllers']);

Note also that the two switches specify when to switch from one controller to another.
The rules are: 1. If CSTR concentration >= 8, use "mpcobj" 2. If 3 <= CSTR concentration
< 8, use "mpcobj_intermediate" 3. If CSTR concentration < 3, use "mpcobj_final"

Simulate with the Multiple MPC Controllers block

open_system([mmpc_mdl '/Measurements']);

open_system([mmpc_mdl '/MV']);

sim(mmpc_mdl)

-->Converting model to discrete time.

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-25

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

7 Gain Scheduling MPC Design

7-26

The transition is now well controlled. The major improvement is in the transition
through the open-loop unstable region. The plot of the switching signal shows when
controller transitions occur. The MV character changes at these times because of the
change in dynamic characteristics introduced by the new prediction model.

bdclose(plant_mdl)

bdclose(mpc_mdl)

 Gain Scheduled MPC Control of Nonlinear Chemical Reactor

7-27

bdclose(mmpc_mdl)

Related Examples
• “Schedule Controllers at Multiple Operating Points”
• “Coordinate Multiple Controllers at Different Operating Points” on page 4-64
• “Gain Scheduled MPC Control of Mass-Spring System” on page 7-28

More About
• “Design Workflow for Gain Scheduling” on page 7-3

7 Gain Scheduling MPC Design

7-28

Gain Scheduled MPC Control of Mass-Spring System

This example shows how to use an Multiple MPC Controllers block to implement gain
scheduled MPC control of a nonlinear plant.

System Description

The system is composed by two masses M1 and M2 connected to two springs k1 and k2
respectively. The collision is assumed completely inelastic. Mass M1 is pulled by a force
F, which is the manipulated variable. The objective is to make mass M1's position y1
track a given reference r.

The dynamics are twofold: when the masses are detached, M1 moves freely. Otherwise,
M1+M2 move together. We assume that only M1 position and a contact sensor are
available for feedback. The latter is used to trigger switching the MPC controllers. Note
that position and velocity of mass M2 are not controllable.

 /-----\ k1 ||

 F <--- | M1 |----/\/\/\-------------[|| wall

 || | |---/ ||

 || k2 \-/ /----\ ||

wall||]--/\/\/\-------------------| M2 | ||

 || \----/ ||

 || ||

----yeq2------------------ y1 ------ y2 ----------------yeq1----> y axis

The model is a simplified version of the model proposed in the following reference:

A. Bemporad, S. Di Cairano, I. V. Kolmanovsky, and D. Hrovat, "Hybrid modeling and
control of a multibody magnetic actuator for automotive applications," in Proc. 46th
IEEE® Conf. on Decision and Control, New Orleans, LA, 2007.

Model Parameters

M1=1; % mass

M2=5; % mass

k1=1; % spring constant

k2=0.1; % spring constant

b1=0.3; % friction coefficient

b2=0.8; % friction coefficient

yeq1=10; % wall mount position

yeq2=-10; % wall mount position

 Gain Scheduled MPC Control of Mass-Spring System

7-29

State Space Models

states: position and velocity of mass M1; manipulated variable: pull force F measured
disturbance: a constant value of 1 which provides calibrates spring force to the right
value measured output: position of mass M1

State-space model of M1 when masses are not in contact.

A1=[0 1;-k1/M1 -b1/M1];

B1=[0 0;-1/M1 k1*yeq1/M1];

C1=[1 0];

D1=[0 0];

sys1=ss(A1,B1,C1,D1);

sys1=setmpcsignals(sys1,'MD',2);

-->Assuming unspecified input signals are manipulated variables.

State-space model when the two masses are in contact.

A2=[0 1;-(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];

B2=[0 0;-1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];

C2=[1 0];

D2=[0 0];

sys2=ss(A2,B2,C2,D2);

sys2=setmpcsignals(sys2,'MD',2);

-->Assuming unspecified input signals are manipulated variables.

Design MPC Controllers

Common parameters

Ts=0.2; % sampling time

p=20; % prediction horizon

m=1; % control horizon

Define MPC object for mass M1 detached from M2.

MPC1=mpc(sys1,Ts,p,m);

MPC1.Weights.OV=1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

7 Gain Scheduling MPC Design

7-30

Define constraints on the manipulated variable.

MPC1.MV=struct('Min',0,'Max',Inf,'RateMin',-1e3,'RateMax',1e3);

Define MPC object for mass M1 and M2 stuck together.

MPC2=mpc(sys2,Ts,p,m);

MPC2.Weights.OV=1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.

MPC2.MV=MPC1.MV;

Simulate Gain Scheduled MPC in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')

 disp('Simulink(R) is required to run this example.')

 return

end

mdl = 'mpc_switching';

Simulate gain scheduled MPC control with Multiple MPC Controllers block.

y1initial=0; % Initial positions

y2initial=10;

open_system(mdl);

if exist('animationmpc_switchoff','var') && animationmpc_switchoff

 close_system([mdl '/Animation']);

 clear animationmpc_switchoff

end

 Gain Scheduled MPC Control of Mass-Spring System

7-31

disp('Start simulation by switching control between MPC1 and MPC2 ...');

disp('Control performance is satisfactory.');

open_system([mdl '/signals']);

sim(mdl);

Start simulation by switching control between MPC1 and MPC2 ...

7 Gain Scheduling MPC Design

7-32

Control performance is satisfactory.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Gain Scheduled MPC Control of Mass-Spring System

7-33

7 Gain Scheduling MPC Design

7-34

Use of two controllers provides good performance under all conditions.

Repeat Simulation Using MPC1 Only (Assumes Masses Never in Contact)

disp('Now repeat simulation by using only MPC1 ...');

disp('When two masses stick together, control performance deteriorates.');

MPC2save=MPC2;

MPC2=MPC1; %#ok<*NASGU>

sim(mdl);

Now repeat simulation by using only MPC1 ...

When two masses stick together, control performance deteriorates.

 Gain Scheduled MPC Control of Mass-Spring System

7-35

7 Gain Scheduling MPC Design

7-36

In this case, performance degrades whenever the two masses join.

Repeat Simulation Using MPC2 Only (Assumes Masses Always in Contact)

disp('Now repeat simulation by using only MPC2 ...');

disp('When two masses are detached, control performance deteriorates.');

MPC1=MPC2save;

MPC2=MPC1;

sim(mdl);

Now repeat simulation by using only MPC2 ...

When two masses are detached, control performance deteriorates.

 Gain Scheduled MPC Control of Mass-Spring System

7-37

7 Gain Scheduling MPC Design

7-38

In this case, performance degrades when the masses separate, causing the controller to
apply excessive force.

bdclose(mdl)

close(findobj('Tag','mpc_switching_demo'))

Related Examples
• “Schedule Controllers at Multiple Operating Points”
• “Coordinate Multiple Controllers at Different Operating Points” on page 4-64
• “Gain Scheduled MPC Control of Nonlinear Chemical Reactor” on page 7-5

More About
• “Design Workflow for Gain Scheduling” on page 7-3

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-39

Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

This example uses a gain scheduled model predictive controller to control an inverted
pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')

 disp('Simulink Control Design(R) is required to run this example.')

 return

end

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

7 Gain Scheduling MPC Design

7-40

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';

load_system(mdlPlant);

open_system([mdlPlant '/Pendulum and Cart System'],'force');

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-41

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

7 Gain Scheduling MPC Design

7-42

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -15 and 15 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the
cart should return to its original position with a maximum displacement of 1. The
pendulum should also return to the upright position with a peak angle displacement
of 15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

The Choice of Gain Scheduled MPC

In “Control of an Inverted Pendulum on a Cart”, a single MPC controller is able to move
the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 15, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in
the prediction of plant behavior exceed what the built-in MPC robustness can handle,
and the controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;

mpcobj.OV(2).Max = pi/2;

mpcobj.Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-43

To move the cart to a new position between -15 and 15 while maintaining the same rise
time, the controller needs to have more accurate models at different angles so that the
controller can use them for better prediction. Gain scheduled MPC allows you to solve a
nonlinear control problem by designing multiple MPC controllers at different operating
points and switching between them at run time.

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartGainSchedulingMPC';

open_system(mdlMPC);

Although cart velocity x_dot and pendulum angular velocity theta_dot are available
from the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

7 Gain Scheduling MPC Design

7-44

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for
prediction, linearize the Simulink plant model at three different operating points.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');

io(2) = linio([mdlPlant '/F'],1,'openinput');

io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');

io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create specifications for the following three operating points where both cart and
pendulum are stationary:

• Pendulum is horizontal, pointing right (theta = -pi/2)
• Pendulum is upright (theta = 0)
• Pendulum is horizontal, pointing left (theta = pi/2)

angles = [-pi/2 0 pi/2];

for ct=1:length(angles)

create operating point specification

 opspec(ct) = operspec(mdlPlant);

The first state is cart position x.

 opspec(ct).States(1).Known = true;

 opspec(ct).States(1).x = 0;

The second state is cart velocity x_dot (not at steady state).

 opspec(ct).States(2).SteadyState = false;

The third state is pendulum angle theta.

 opspec(ct).States(3).Known = true;

 opspec(ct).States(3).x = angles(ct);

The forth state is angular velocity theta_dot (not at steady state)

 opspec(ct).States(4).SteadyState = false;

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-45

end

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);

[op, opresult] = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating points.

plants = linearize(mdlPlant,op,io);

bdclose(mdlPlant);

Multiple MPC Designs

At each operating point, design an MPC controller with the corresponding linear plant
model.

status = mpcverbosity('off');

for ct=1:length(angles)

Get a single plant model.

 plant = plants(:,:,ct);

 plant.InputName = {'dF';'F'};

 plant.OutputName = {'x';'theta'};

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for prediction. Set
the plant signal types.

 plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarily, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

 Ts = 0.01;

 PredictionHorizon = 50;

 ControlHorizon = 5;

 mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

7 Gain Scheduling MPC Design

7-46

Specify nominal input and output values based on the operating point.

 mpcobj.Model.Nominal.Y = [0;opresult(ct).States(3).x];

 mpcobj.Model.Nominal.X = [0;0;opresult(ct).States(3).x;0];

 mpcobj.Model.Nominal.DX = [0;opresult(ct).States(2).dx;0;opresult(ct).States(4).dx];

There is a limitation on how much force we can apply to the cart, which is specified as
hard constraints on manipulated variable F.

 mpcobj.MV.Min = -200;

 mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

 mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

 mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

 mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

 disturbance_model = getindist(mpcobj);

 setindist(mpcobj,'model',disturbance_model*10);

Update the output disturbance model.

 disturbance_model = getoutdist(mpcobj);

 setoutdist(mpcobj,'model',disturbance_model*10);

Save the MPC controller to the MATLAB workspace.

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-47

 assignin('base',['mpc' num2str(ct)],mpcobj);

end

mpcverbosity(status);

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);

sim(mdlMPC);

-->Converting model to discrete time.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

7 Gain Scheduling MPC Design

7-48

 Gain Scheduled MPC Control of an Inverted Pendulum on a Cart

7-49

In the nonlinear simulation, all the control objectives are successfully achieved.

bdclose(mdlMPC);

More About
• “Gain-Scheduled MPC” on page 7-2
• “Control of an Inverted Pendulum on a Cart” on page 4-144
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 6-42

8

Reference for MPC Designer App

This chapter is the reference manual for the Model Predictive Control Toolbox MPC
Designer app.

• “Generate MATLAB Code from MPC Designer” on page 8-2
• “Generate Simulink Model from MPC Designer” on page 8-4
• “Compare Multiple Controller Responses Using MPC Designer” on page 8-6

8 Reference for MPC Designer App

8-2

Generate MATLAB Code from MPC Designer

This topic shows how to generate MATLAB code for creating and simulating model
predictive controllers designed in the MPC Designer app. Generated MATLAB scripts
are useful when you want to programmatically reproduce designs that you obtained
interactively.

To create a MATLAB script:

1 In the MPC Designer app, interactively design and tune your model predictive
controller.

2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, Export Controller is on the MPC Designer tab, in the Result
section.

Note: If you opened MPC Designer from Simulink, click the Update and Simulate
arrow .

3
Under Export Controller or Update and Simulate, click Generate Script .

4 In the Generate MATLAB Script dialog box, select one or more simulation scenarios
to include in the generated script.

 Generate MATLAB Code from MPC Designer

8-3

5 Click Generate Script to create the MATLAB script for creating the current MPC
controller and running the selected simulation scenarios. The generated script opens
in the MATLAB Editor.

In addition to generating a script, the app exports the following to the MATLAB
workspace:

• A copy of the plant used to create the controller, that is the controller internal
plant model

• Copies of the plants used in any simulation scenarios that do not use the default
internal plant model

• The reference and disturbance signals specified for each simulation scenario

See Also
mpc

Related Examples
• “Generate Simulink Model from MPC Designer” on page 8-4

8 Reference for MPC Designer App

8-4

Generate Simulink Model from MPC Designer

This topic shows how to generate a Simulink model that uses the current model
predictive controller to control its internal plant model.

To create a Simulink model:

1 In the MPC Designer app, interactively design and tune your model predictive
controller.

2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, Export Controller is on the MPC Designer tab, in the Result
section.

3

Under Export Controller, click Generate Simulink Model .

The app exports the current MPC controller and its internal plant model to
the MATLAB workspace and creates a Simulink model that contains an MPC
Controller block and a Plant block

Also, default step changes in the output setpoints are added to the References
block.

 Generate Simulink Model from MPC Designer

8-5

Use the generated model to validate your controller design. The generated model serves
as a template for moving easily from the MATLAB design environment to the Simulink
environment.

You can also use the Simulink model to generate code and deploy it for real-time control
applications. For more information, see “Generate Code and Deploy Controller to Real-
Time Targets” on page 3-5.

See Also
MPC Controller | MPC Designer

Related Examples
• “Generate MATLAB Code from MPC Designer” on page 8-2

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 3-5
• “Design MPC Controller in Simulink”

8 Reference for MPC Designer App

8-6

Compare Multiple Controller Responses Using MPC Designer

This example shows how to compare multiple controller responses using the MPC
Designer app. In particular, controllers with different output constraint configuration are
compared.

Define Plant Model

Create a state-space model of your plant, and specify the MPC signal types.

A = [-0.0285 -0.0014; -0.0371 -0.1476];

B = [-0.0850 0.0238; 0.0802 0.4462];

C = [0 1; 1 0];

D = zeros(2,2);

plant = ss(A,B,C,D);

plant = setmpcsignals(plant,'MV',1,'UD',2,'MO',1,'UO',2);

Open MPC Designer App

Open the MPC Designer app, and import the plant model.

mpcDesigner(plant)

 Compare Multiple Controller Responses Using MPC Designer

8-7

The app adds the specified plant to the Data Browser along with a default controller,
mpc1, and a default simulation scenario, scenario1.

Define Simulation Scenario

Configure a disturbance rejection simulation scenario.

In the MPC Designer app, on the MPC Designer tab, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 40 seconds.

In the Reference Signals table, in the Signal drop-down lists, select Constant to hold
the setpoints of both outputs at their nominal values.

8 Reference for MPC Designer App

8-8

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step. Use
the default Time and Step values.

This scenario simulates a unit step change in the unmeasured input disturbance at a
time of 1 second.

Click OK.

The app runs the updated simulation scenario and updates the controller response
plots. In the Output Response plots, the default controller returns the measured
output, MO1, to its nominal value, however the control action causes an increase in the
unmeasured output, UO1.

 Compare Multiple Controller Responses Using MPC Designer

8-9

Create Controller with Hard Output Constraints

Suppose that the control specifications indicate that such an increase in the unmeasured
disturbance is undesirable. To limit the effect of the unmeasured disturbance, create a
controller with a hard output constraint.

Note: In practice, using hard output constraints is not recommended. Such constraints
can create an infeasible optimization problem when the output variable moves outside of
the constraint bounds due to a disturbance.

In the Data Browser, in the Controllers section, right-click mpc1, and select Copy.

The app creates a copy of the default controller and adds it to the Data Browser.

Double-click each controller and rename them as follows.

8 Reference for MPC Designer App

8-10

Right-click the mpcHard controller, and select Tune (make current). The app adds the
mpcHard controller response to the Input Response and Output Response plots.

 Compare Multiple Controller Responses Using MPC Designer

8-11

On the Tuning tab, in the Controller section, mpcHard is selected as the current MPC
Controller being tuned.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, in the Max column,
specify a maximum output constraint of 3 for the unmeasured output (UO).

By default, all output constraints are soft, that is the controller can allow violations of
the constraint when computing optimal control moves.

To make the unmeasured output constraint hard, click Constraint Softening Settings,
and enter a MaxECR value of 0 for the UO. This setting places a strict limit on the
controller output that cannot be violated.

8 Reference for MPC Designer App

8-12

Click OK.

 Compare Multiple Controller Responses Using MPC Designer

8-13

The response plots update to reflect the new mpcHard configuration. In the Output
Response plot, in the UO1 plot, the mpcHard response is limited to a maximum of 3. As
a trade-off, the controller cannot return the MO1 response to its nominal value.

Tip If the plot legends are blocking the response signals, you can drag the legends to
different locations.

Create Controller with Soft Output Constraints

Suppose the deviation of MO1 from its nominal value is too large. You can soften the
output constraint for a compromise between the two control objectives: MO1 output
tracking and UO1 constraint satisfaction.

8 Reference for MPC Designer App

8-14

On the Tuning tab, in the Analysis section, click Store Controller to save a copy of
mpcHard in the Data Browser.

In the Data Browser, in the Controllers section, rename mpcHard_Copy to mpcSoft.

On the Tuning tab, in the Controller section, in the MPC Controller drop-down list,
select mpcSoft as the current controller.

The app adds the mpcSoft controller response to the Input Response and Output
Response plots.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, enter a MaxECR
value of 100 for the UO to soften the constraint.

Click OK.

 Compare Multiple Controller Responses Using MPC Designer

8-15

The response plots update to reflect the new mpcSoft configuration. In the Output
Response plot, mpcSoft shows a compromise between the previous controller responses.

Remove Default Controller Response Plot

To compare the two constrained controllers only, you can remove the default
unconstrained controller from the input and output response plots.

On the MPC Designer tab, in the Result section, click Compare Controllers >
mpcNone.

8 Reference for MPC Designer App

8-16

The app removes the mpcNone responses from the Input Response and Output
Response plots.

 Compare Multiple Controller Responses Using MPC Designer

8-17

You can toggle the display of any controller in the Data Browser except for controller
currently being tuned. Under Compare Controllers, the controllers with displayed
responses are indicated with check marks.

See Also
MPC Designer

Related Examples
• “Design Controller Using MPC Designer”
• “Design MPC Controller in Simulink”

8 Reference for MPC Designer App

8-18

More About
• “Specifying Constraints” on page 1-10

